Experimental tests were conducted with the lizard Liolaemus tenuis (Tropiduridae), to determine the potential sources of pheromones used in its chemical communication, centered in the phenomenon of self-recognition. During the postreproductive season, feces of both sexes and secretions of precloacal pores (present only in males) were tested. Stimuli were presented to lizards spread on rocks, and the number of tongue-flicks (TF) to the rocks was used as a bioassay to determine pheromone recognition. Feces contained pheromones involved in self-recognition, since lizards showed less TF confronted to rocks with suspensions of their own feces than with suspensions of feces of conspecifics or with water (control). In order to assess the chemical nature of self-recognition pheromones, feces were submitted to a sequential extraction with three solvents of increasing polarity, thereby obtaining three feces fractions. There were no differences in TF towards rocks with different fractions with own feces. Additionally, lizards showed similar TF to rocks with fractions of own and conspecific feces, suggesting that the separation procedure broke up a complex stimulus into parts that were not active individually as pheromones. Finally, males did not discriminate between precloacal secretions from themselves and from another male. It is possible that these secretions convey information relevant to or detectable by females only.
Social-chemical recognition is exhibited by all the Liolaemus lizards tested to date, except Liolaemus fitzgeraldi, which during post-hibernation did not discriminate chemosignals of same-sex individuals from a control. To clarify if L. fitzgeraldi is unique among the studied Liolaemus in lacking social-chemical recognition or if this was previously undetected, we recorded behavior during pre-and post-hibernation when confronted with chemosignals of conspecifics and from themselves. L fitzgeraldi showed self-recognition and seasonal changes in two exploratory behaviors. Potentially, conspecific recognition in L fitzgeraldi was undetected due to seasonality, but this species may rely comparatively less on chemical communication than congeners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.