Temporary restorations play a fundamental role in oral rehabilitation. They can be used on teeth or implants for a variable period of time during the period prior to rehabilitation with definitive restorations. Temporary or provisional restorations manufactured via CAD/CAM methods are becoming increasingly used in the intermediate phase of the treatment of complex cases. The main objective of this study was to compare the fracture resistance of three materials used in the creation of provisional crowns on implants: polymethyl methacrylate (PMMA), composite resin, and polyether ether ketone (PEEK). Fracture resistance in PMMA (Zirkonzahn Temp Basic® , Gais, South Tyrol, Italy) ranged from 1216.0 N to 1461.2 N, with a mean of 1300.4 N (SD = 97.09). In the composite material (3M Lava Ultimate®, Minnesota, USA), fracture resistance varied between 1343.5 N and 1490.6 N, with a mean of 1425.9 N (SD = 49.03). Lastly, in PEEK (Tecno Med Mineral®, Zirkonzahn®, Gais, South Tyrol, Italy), fracture resistance ranged from 2294.8 N to 2451.7 N, with a mean of 2359.5 (SD = 50.01). The crowns made with the PEEK Tecno Med Mineral® (Zirkonzahn®, Tyrol, Italy) material presented the best fracture resistance, followed by the crowns made with the Lava Ultimate® (3M® ESPE, Minnesota, USA) composite resin material and, finally, those made with the PMMA Temp Basic® (Zirkonzahn®, Tyrol, Italy) material.