Materials GOx immobilization Km app / mM Ref. PVA-g-P(4-VP) films Physical entrapment 19 1 Nafion film Covalent attachment with GA, BSA and Nafion 14.91 2 Chitosan matrix Covalent attachment with GA in a 5% (v/v) glycerol solution 14.2 3 NiO modified glassy carbon electrodes Co-deposition with NiO nanoparticles at 0.8 V for 15 min in buffer solution 2.7 4 Gold nanoparticles Thiol-Cystamine modification of Au with IO4oxidized GOx 4.3
In this work, a simple lignin‐based laser lithography technique is developed and used to fabricate on‐chip microsupercapacitors (MSCs) using 3D graphene electrodes. Specifically, lignin films are transformed directly into 3D laser‐scribed graphene (LSG) electrodes by a simple one‐step CO2 laser irradiation. This step is followed by a water lift‐off process to remove unexposed lignin, resulting in 3D graphene with the designed electrode patterns. The resulting LSG electrodes are hierarchically porous, electrically conductive (conductivity is up to 66.2 S cm−1), and have a high specific surface area (338.3 m2 g−1). These characteristics mean that such electrodes can be used directly as MSC electrodes without the need for binders and current collectors. The MSCs fabricated using lignin laser lithography exhibit good electrochemical performances, namely, high areal capacitance (25.1 mF cm−2), high volumetric energy density (≈1 mWh cm−3), and high volumetric power density (≈2 W cm−3). The versatility of lignin laser lithography opens up the opportunity in applications such as on‐chip microsupercapacitors, sensors, and flexible electronics at large‐scale production.
Luminescent thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. Lanthanide-based materials are among the most versatile thermal probes used in luminescent nanothermometers. Here, nanorods of metal organic framework Tb0.99Eu0.01(BDC)1.5(H2O)2 (BDC = 1-4-benzendicarboxylate) have been prepared by the reverse microemulsion technique and characterized and their photoluminescence properties studied from room temperature to 318 K. Aqueous suspensions of these nanoparticles display an excellent performance as ratiometric luminescent nanothermometers in the physiological temperature (300-320 K) range.
The application of graphite anodes in potassium-ion batteries (KIB) is limited by the large variation in lattice volume and the low diffusion coefficient of potassium ions during (de)potassiation. This study demonstrates nitrogendoped, defect-rich graphitic nanocarbons (GNCs) as high-performance KIB anodes. The GNCs with controllable defect densities are synthesized by annealing an ethylenediaminetetraacetic acid nickel coordination compound. The GNCs show better performance than the previously reported thin-walled graphitic carbonaceous materials such as carbon nanocages and nanotubes. In particular, the GNC prepared at 600 °C shows a stabilized capacity of 280 mAh g −1 at 50 mA g −1 , robust rate capability, and long cycling life due to its high-nitrogen-doping, short-range-ordered, defect-rich graphitic structure. A high capacity of 189 mAh g −1 with a long cycle life over 200 cycles is demonstrated at a current density of 200 mA g −1 . Further, it is confirmed that the potassium ion storage mechanism of GNCs is different from that of graphite using multiple characterization methods. Specifically, the GNCs with numerous defects provide more active sites for the potassiation process, which results in a final discharge product with short-range order. This study opens a new pathway for designing graphitic carbonaceous materials for KIB anodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.