We study general mathematical properties of a new class of continuous distributions with an extra positive parameter called the type I half-logistic family. We present some special models and investigate the asymptotics and shapes. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. We derive a power series for the quantile function. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies and order statistics are determined. We introduce a bivariate extension of the new family. We discuss the estimation of the model parameters by maximum likelihood and illustrate its potentiality by means of two applications to real data.
Several lifetime distributions have played an important role to fit survival data. However, for some of these models, the computation of maximum likelihood estimators is quite difficult due to presence of flat regions in the search space, among other factors. Several well-known derivative-based optimization tools are unsuitable for obtaining such estimates. To circumvent this problem, we introduce the AdequacyModel computational library version 2.0.0 for the R statistical environment with two major contributions: a general optimization technique based on the Particle Swarm Optimization (PSO) method (with a minor modification of the original algorithm) and a set of statistical measures for assessment of the adequacy of the fitted model. This library is very useful for researchers in probability and statistics and has been cited in various papers in these areas. It serves as the basis for the Newdistns library (version 2.1) published in an impact journal in the area of computational statistics, see https://CRAN.R-project.org/package=Newdistns . It is also the basis of the Wrapped library (version 2.0), see https://CRAN.R-project.org/package=Wrapped . A third package making use of the AdequacyModel library can be found in https://CRAN.R-project.org/package=sglg . In addition, the proposed library has proved to be very useful for maximizing log-likelihood functions with complex search regions. The library provides a greater control of the optimization process by introducing a stop criterion based on a minimum number of iterations and the variance of a given proportion of optimal values. We emphasize that the new library can be used not only in statistics but in physics and mathematics as proved in several examples throughout the paper.
We propose a new family of distributions called the exponentiated Kumaraswamy-G class with three extra positive parameters, which generalizes the Cordeiro and de Castro's family. Some special distributions in the new class are discussed. We derive some mathematical properties of the proposed class including explicit expressions for the quantile function, ordinary and incomplete moments, generating function, mean deviations, reliability, Rényi entropy and Shannon entropy. The method of maximum likelihood is used to fit the distributions in the proposed class. Simulations are performed in order to assess the asymptotic behavior of the maximum likelihood estimates. We illustrate its potentiality with applications to two real data sets which show that the extended Weibull model in the new class provides a better fit than other generalized Weibull distributions.
We propose a new lifetime model called the exponentiated power generalized Weibull (EPGW) distribution, which is obtained from the exponentiated family applied to the power generalized Weibull (PGW) distribution. It can also be derived from a power transform on an exponentiated Nadarajah-Haghighi random variable. Since several structural properties of the PGW distribution have not been studied, they can be obtained from those of the EPGW distribution. The model is very flexible for modeling all common types of hazard rate functions. It is a very competitive model to the well-known Weibull, exponentiated exponential and exponentiated Weibull distributions, among others. We also give a physical motivation for the new distribution if the power parameter is an integer. Some of its mathematical properties are investigated. We discuss estimation of the model parameters by maximum likelihood and provide two applications to real data. A simulation study is performed in order to examine the accuracy of the maximum likelihood estimators of the model parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.