Type I diabetes mellitus (DM) is associated with impaired fracture healing. Specifically, DM affects multiple phases of fracture healing including early cellular proliferation and late phases resulting in inferior biomechanical properties. Recent studies demonstrated the utility of pulsed low-intensity ultrasound (US) to facilitate fracture healing. The current study evaluated the effects of daily application of US on mid-diaphyseal femoral fractures in DM and non-DM BB Wistar rats. Immunohistochemical staining for PCNA was used to evaluate cellular proliferation at 2, 4, and 7 days post-fracture. In concordance with previous findings, DM fracture callus demonstrated decreased cellular proliferation. Importantly, the application of US did not significantly alter the proliferation in either DM or control groups. However, mechanical testing revealed significantly greater torque to failure and stiffness in US-treated DM versus non-US-treated DM groups at six weeks post-fracture. Despite the inability of US to affect the early proliferative phase of fracture healing, its application clearly results in improved mechanical properties during the late phases of healing. These findings suggest a potential role of US as an adjunct for DM fracture treatment.
Polymeric materials have been replacing other materials in various applications, from structural to electronic components. In particular, since the discovery of conducting polymers, the use of these materials is growing up in the manufacture of electronic components, such as organic lightemitting diodes, organic electrodes, energy storage devices and artificial muscles, among others. On the other hand, examples of sensors of conductive polymers based on the piezoresistive effect, with large potential for applications, are not sufficiently investigated. This work reports on the piezoresistive effect of an intrinsically conductive polymer, polyaniline, which was prepared in the form of thin films by spin coating on polyethylene terephthalate substrates. The relationship between electrical response and mechanical solicitations is presented for different preparation conditions. The values of the gauge factor ranges from 10 to 22 for different samples and demonstrates the viability of these materials as piezoresistive sensors.
This study proposes improving the understanding of the main aspects involved in the design of warehouses by the construction of a framework that reveals the state-of-art. The initial research bibliography generated a framework, which was structured in three dimensions: inputs; design and implementation; and outputs. The validation of framework was accomplished through a systematic review of the literature, covering 68 articles published in the period 1999-2015. This study covered the main aspects highlighted in the academic literature that influence the design of warehouses. Additionally, an overview of the publications based on a theoretical/empirical and a quantitative/qualitative approach was pointed out. This paper aims to contribute to both industry and academic. On the one hand, the framework aggregates value for professionals by permitting the rapid identification of variables, which must be considered in warehouse design. On the other hand, by systematizing the warehouse design area, researchers are able to identify gaps that may generate future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.