The ongoing COVID-19 pandemic spread to the UK in early 2020 with the first few cases being identified in late January. A rapid increase in confirmed cases started in March, and the number of infected people is however unknown, largely due to the rather limited testing scale. A number of reports published so far reveal that the COVID-19 has long incubation period, high fatality ratio and non-specific symptoms, making this novel coronavirus far different from common seasonal influenza. In this note, we present a modified SEIR model which takes into account the time lag effect and probability distribution of model states. Based on the proposed model, it is estimated that the actual total number of infected people by 1 April in the UK might have already exceeded 610,000. Average fatality rates under different assumptions at the beginning of April 2020 are also estimated. Our model also reveals that the R 0 value is between 7.5-9 which is much larger than most of the previously reported values. The proposed model has a potential to be used for assessing future epidemic situations under different intervention strategies.Keywords COVID-19 · SEIR model · Coronavirus pandemic assessment 1 DisclaimerAll the data used in the paper are based on publicly available resources, including references to official and professional websites and peer-reviewed journals. The model, data and discussions presented in this paper is for research and education only. The model may not represent the real situation, and it may fail due to inadequate model elements and incorrect initial settings.
Localization is a fundamental research issue in wireless sensor networks (WSNs). In most existing localization schemes, several beacons are used to determine the locations of sensor nodes. These localization mechanisms are frequently based on an assumption that the locations of beacons are known. Nevertheless, for many WSN systems deployed in unstable environments, beacons may be moved unexpectedly; that is, beacons are drifting, and their location information will no longer be reliable. As a result, the accuracy of localization will be greatly affected. In this paper, we propose a distributed beacon drifting detection algorithm to locate those accidentally moved beacons. In the proposed algorithm, we designed both beacon self-scoring and beacon-to-beacon negotiation mechanisms to improve detection accuracy while keeping the algorithm lightweight. Experimental results show that the algorithm achieves its designed goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.