The anticancer effect of sclareol has long been reported, however, the exact mechanisms underlying the antitumorigenic effect of sclareol in cervical carcinoma remain to be fully elucidated. The present study analyzed cell proliferation and cell apoptosis by MTT and FITC-Annexin V assays. The protein levels of caveolin-1 (Cav-1) and copper-zinc superoxide dismutase (SOD)1 were determined by western blotting, and the interaction of Cav1 and HSC70 was investigated by co-immunoprecipitation experiments. The present study found that sclareol inhibited cell proliferation and induced apoptosis in HeLa cells. Two cancer-associated proteins, Cav1 and SOD1 were identified as potential targets of sclareol in HeLa cells. The expression of Cav1 increased when the cells were treated with sclareol, and the protein level of SOD1 was negatively correlated with Cav1. The overexpression of Cav1 enhanced the sensitivity of the HeLa cells to sclareol treatment and downregulated the protein level of SOD1, which exhibited potential associations between Cav1 and SOD1. In addition, sclareol significantly sensitized several cancer cells to the anticancer effect of bortezomib by targeting Cav1 and SOD1. Taken together, the results of the present study demonstrated that sclareol inhibited tumor cell growth through the upregulation of Cav1, and provides a potential therapeutic target for human cancer.
Introduction
Before anti-EGFR therapy is given to patients with colorectal cancer, it is required to determine KRAS mutation status in tumor. When tumor tissue is not available, cell-free DNA (liquid biopsy) is commonly used as an alternative. Due to the low abundance of tumor-derived DNA in cell-free DNA samples, methods with high sensitivity were preferred, including digital polymerase chain reaction, amplification refractory mutation system and next-generation sequencing. The aim of this systemic review and meta-analysis was to investigate the accuracy of those methods in detecting KRAS mutation in cell-free DNA sample from patients with colorectal cancer.
Methods
Literature search was performed in Pubmed, Embase, and Cochrane Library. After removing duplicates from the 170 publications found by literature search, eligible studies were identified using pre-defined criteria. Quality of the publications and relevant data were assessed and extracted thereafter. Meta-DiSc and STATA softwares were used to pool the accuracy parameters from the extracted data.
Results
A total of 33 eligible studies were identified for this systemic review and meta-analysis. After pooling, the overall sensitivity, specificity, and diagnostic odds ratio were 0.77 (95%CI: 0.74–0.79), 0.87 (95%CI: 0.85–0.89), and 23.96 (95%CI: 13.72–41.84), respectively. The overall positive and negative likelihood ratios were 5.55 (95%CI: 3.76–8.19) and 0.29 (95%CI: 0.21–0.38), respectively. Area under curve of the summarized ROC curve was 0.8992.
Conclusion
Digital polymerase chain reaction, amplification refractory mutation system, and next-generation sequencing had overall high accuracy in detecting KRAS mutation in cell-free DNA sample. Large prospective randomized clinical trials are needed to further convince the accuracy and usefulness of KRAS mutation detection using cfDNA/liquid biopsy samples in clinical practice.
Trial registration
PROSPERO CRD42020176682; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=176682.
Dihydroartemisinin (DHA) has been shown to inhibit the viability of various cancer cells. Previous studies have revealed that the mechanisms involved in the inhibitory effects of DHA are based on theactivation of p53 and the mitochondrial-related cell death pathway. However, the exact association between upstream signaling and the activation of cell death pathway remains unclear. In this study, we found that DHA treatment induced the upregulation of caveolin 1 (Cav1) and mitochondrial carrier homolog 2 (MTCH2) in HeLa cells, and this was associated with the DHA-induced inhibition of cell viability and DHA-induced apoptosis. Additionally, the overexpression of Cav1 and MTCH2 in HeLa cells enhanced the inhibitory effects of DHA on cell viability. Moreover, we also found that the upregulation of Cav1 contributed to the DHA-mediated p53 activation and the downregulation of the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), which have been reported to contribute to the activation of the cell death pathway. Of note, we also found that DHA induced the nuclear translocation and accumulation of both Cav1 and p53, indicating a novel potential mechanism, namely the regulation of p53 activation by Cav1. On the whole, our study identified Cav1 and MTCH2 as the molecular targets of DHA and revealed a new link between the upstream Cav1/MTCH2 upregulation and the downstream activation of the cell death pathway involved in the DHA-mediated inhibition of cell viability.
Synthetic lethality describes situations in which defects in two different genes or pathways together result in cell death. This concept has been applied to drug development for cancer treatment, as represented by Poly (ADP-ribose) polymerase (PARPs) inhibitors. In the current study, we performed a computational screening to discover new PARP inhibitors. Among the 11,247 compounds analyzed, one natural product, ZINC67913374, stood out by its superior performance in the simulation analyses. Compared with the FDA approved PARP1 inhibitor, olaparib, our results demonstrated that the ZINC67913374 compound achieved a better grid score (−86.8) and amber score (−51.42). Molecular dynamics simulations suggested that the PARP1-ZINC67913374 complex was more stable than olaparib. The binding free energy for ZINC67913374 was −177.28 kJ/mol while that of olaparib was −159.16 kJ/mol. These results indicated ZINC67913374 bound to PARP1 with a higher affinity, which suggest ZINC67913374 has promising potential for cancer drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.