Plant architecture is an important agronomic trait that affects crop yield. Here, we report that a gene involved in programmed cell death, OsPDCD5, negatively regulates plant architecture and grain yield in rice. We used the CRISPR/Cas9 system to introduce loss-of-function mutations into OsPDCD5 in 11 rice cultivars. Targeted mutagenesis of OsPDCD5 enhanced grain yield and improved plant architecture by increasing plant height and optimizing panicle type and grain shape. Transcriptome analysis showed that OsPDCD5 knockout affected auxin biosynthesis, as well as the gibberellin and cytokinin biosynthesis and signaling pathways. OsPDCD5 interacted directly with OsAGAP, and OsAGAP positively regulated plant architecture and grain yield in rice. Collectively, these findings demonstrate that OsPDCD5 is a promising candidate gene for breeding super rice cultivars with increased yield potential and superior quality.
Developing methods for increasing the biomass and improving the plant architecture is important for crop improvement. We herein describe a gene belonging to the RING_Ubox (RING (Really Interesting New Gene) finger domain and U-box domain) superfamily, PLANT ARCHITECTURE and GRAIN NUMBER 1 (PAGN1), which regulates the number of grains per panicle, the plant height, and the number of tillers. We used the CRISPR/Cas9 system to introduce loss-of-function mutations to OsPAGN1. Compared with the control plants, the resulting pagn1 mutant plants had a higher grain yield because of increases in the plant height and in the number of tillers and grains per panicle. Thus, OsPAGN1 may be useful for the genetic improvement of plant architecture and yield. An examination of evolutionary relationships revealed that OsPAGN1 is highly conserved in rice. We demonstrated that OsPAGN1 can interact directly with OsCNR10 (CELL NUMBER REGULATOR10), which negatively regulates the number of rice grains per panicle. A transcriptome analysis indicated that silencing OsPAGN1 affects the levels of active cytokinins in rice. Therefore, our findings have clarified the OsPAGN1 functions related to rice growth and grain development.
Amylose content (AC) is the main factor determining the palatability, viscosity, transparency, and digestibility of rice (Oryza sativa) grains. AC in rice grains is mainly controlled by different alleles of the Waxy (Wx) gene. The AP2/EREBP transcription factor OsEBP89 interacts with the MYC‐like protein OsBP5 to synergistically regulate the expression of Wx. Here, we determined that the GLYCOGEN SYNTHASE KINASE 5 (OsGSK5, also named SHAGGY‐like kinase 41 [OsSK41]) inhibits the transcriptional activation activity of OsEBP89 in rice grains during amylose biosynthesis. The loss of OsSK41 function enhanced Wx expression and increased AC in rice grains. By contrast, the loss of function of OsEBP89 reduced Wx expression and decreased AC in rice grains. OsSK41 interacts with OsEBP89 and phosphorylates four of its sites (Thr‐28, Thr‐30, Ser‐238, and Thr‐257), which makes OsEBP89 unstable and attenuates its interaction with OsBP5. Wx promoter activity was relatively weak when regulated by the phosphomimic variant OsEBP89E–OsBP5 but relatively strong when regulated by the nonphosphorylatable variant OsEBP89A–OsBP5. Therefore, OsSK41‐mediated phosphorylation of OsEBP89 represents an additional layer of complexity in the regulation of amylose biosynthesis during rice grain development. In addition, our findings provide four possible sites for regulating rice grain AC via precise gene editing.
Auxin is an important phytohormone in plants, and auxin signaling pathways in rice play key roles in regulating its growth, development, and productivity. To investigate how rice grain yield traits are regulated by auxin signaling pathways and to facilitate their application in rice improvement, we validated the functional relationships among regulatory genes such as OsIAA10, OsSK41, and OsARF21 that are involved in one of the auxin (OsIAA10) signaling pathways. We assessed the phenotypic effects of these genes on several grain yield traits across two environments using knockout and/or overexpression transgenic lines. Based on the results, we constructed a model that showed how grain yield traits were regulated by
Plant height and grain size are important agronomic traits affecting rice yield. Various plant hormones participate in the regulation of plant height and grain size in rice. However, how these hormones cooperate to regulate plant height and grain size is poorly understood. In this study, we identified a brassinosteroid-related gene, hfr131, from an introgression line constructed using Oryza longistaminata, that caused brassinosteroid insensitivity and reduced plant height and grain length in rice. Further study showed that hfr131 is a new allele of OsBRI1 with a single-nucleotide polymorphism (G to A) in the coding region, leading to a T988I conversion at a conserved site of the kinase domain. By combining yeast one-hybrid assays, chromatin immunoprecipitation-quantitative PCR and gene expression quantification, we demonstrated that OsARF17, an auxin response factor, could bind to the promoter region of HFR131 and positively regulated HFR131 expression, thereby regulating the plant height and grain length, and influencing brassinosteroid sensitivity. Haplotype analysis showed that the consociation of OsAFR17Hap1/HFR131Hap6 conferred an increase in grain length. Overall, this study identified hfr131 as a new allele of OsBRI1 that regulates plant height and grain length in rice, revealed that brassinosteroid and auxin might coordinate through OsARF17–HFR131 interaction, and provided a potential breeding target for improvement of rice yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.