Hybrid inorganic–organic superlattice with an electron-transmitting but phonon-blocking structure has emerged as a promising flexible thin film thermoelectric material. However, the substantial challenge in optimizing carrier concentration without disrupting the superlattice structure prevents further improvement of the thermoelectric performance. Here we demonstrate a strategy for carrier optimization in a hybrid inorganic–organic superlattice of TiS2[tetrabutylammonium]x[hexylammonium]y, where the organic layers are composed of a random mixture of tetrabutylammonium and hexylammonium molecules. By vacuum heating the hybrid materials at an intermediate temperature, the hexylammonium molecules with a lower boiling point are selectively de-intercalated, which reduces the electron density due to the requirement of electroneutrality. The tetrabutylammonium molecules with a higher boiling point remain to support and stabilize the superlattice structure. The carrier concentration can thus be effectively reduced, resulting in a remarkably high power factor of 904 µW m−1 K−2 at 300 K for flexible thermoelectrics, approaching the values achieved in conventional inorganic semiconductors.
Graphene has attracted intensive interests from broad areas of chemistry, physics, and materials science, among others. Interest in graphene's thermoelectric (TE) applications has engendered a large pile of publications and a speeding-up pace of research, making review of such research timely. This is a review covering the TE properties and their optimization strategies of graphene and graphene-based hybrids, as well as their utilizations in TE and other functional devices.
Dislocations are commonly present and important in metals but their effects have not been fully recognized in oxide ceramics. The large strain energy raised by the rigid ionic/covalent bonding in oxide ceramics leads to dislocations with low density (∼106 mm−2), thermodynamic instability and spatial inhomogeneity. In this paper, we report ultrahigh density (∼109 mm−2) of edge dislocations that are uniformly distributed in oxide ceramics with large compositional complexity. We demonstrate the dislocations are progressively and thermodynamically stabilized with increasing complexity of the composition, in which the entropy gain can compensate the strain energy of dislocations. We also find cracks are deflected and bridged with ∼70% enhancement of fracture toughness in the pyrochlore ceramics with multiple valence cations, due to the interaction with enlarged strain field around the immobile dislocations. This research provides a controllable approach to establish ultra-dense dislocations in oxide ceramics, which may open up another dimension to tune their properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.