Rosmarinic acid (RA) and lithospermic acid B (LAB) are two typical phenolic acids with significant bioactivities that may contribute to the therapeutic effects of Salvia miltiorrhiza. Precise knowledge of the biosynthetic pathway leading to RA and LAB is a necessary prerequisite to optimize the production of important phenolic compounds in S. miltiorrhiza. In vivo isotopic labeling experiments using [ring-(13)C]-phenylalanine, combined with dynamic measurements of metabolite levels by UPLC/Q-TOF, were used to investigate the metabolic origin of phenolic acids in S. miltiorrhiza. These data indicate the in vivo phenolic biosynthetic pathway: two intermediates from the general phenylpropanoid pathway and the tyrosine-derived pathway, 4-coumaroyl-CoA and 3,4-dihydroxyphenyllactic acid (DHPL), are coupled by the ester-forming enzyme rosmarinic acid synthase (SmRAS) to form 4-coumaroyl-3',4'-dihydroxyphenyllactic acid (4C-DHPL). The 3-hydroxyl group is introduced late in the pathway by a cytochrome P450-dependent monooxygenase (SmCYP98A14) to form RA. Subsequently, RA is transformed to a phenoxyl radical by oxidation, and two phenoxyl radicals unite spontaneously to form LAB. The results indicate aspects of the complexity of phenolic acid biosynthesis in S. miltiorrhiza and expand an understanding of phenylpropanoid-derived metabolic pathways. The candidate genes for the key enzymes that were revealed provide a substantial foundation for follow-up research on improving the production of important phenolic acids through metabolic engineering in the future.
The aim of this work was to examine rosmarinic acid and its derivative lithospermic acid B accumulation, as well as related gene transcript and metabolite profiling in Salvia miltiorrhiza Bunge (Lamiacae) hairy root cultures, in response to methyl jasmonate (0.1 mM). Results showed methyl jasmonate dramatically enhanced both rosmarinic acid and lithospermic acid B accumulation, from approximately 3.25 to 6.02%, and 2.94 to 19.3% of dry weight, respectively. Meantime, several rosmarinic acid biosynthetic gene transcripts were coordinately induced, with phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, tyrosine aminotransferase, 4-hydroxyphenylpyruvate reductase and 4-hydroxyphenylpyruvate dioxygenase transcripts displaying the most rapid and substantial increases. Liquid chromatographic-tandem mass spectrometry was used to characterize the profile of metabolites involved in rosmarinic acid biosynthesis pathway, in both control and elicited-treated hairy root cultures. Further canonical correlation analysis constructed a gene-to-metabolite network, locating possible gene candidates which would directly link to phenolic acids (rosmarinic acid and lithospermic acid B) production, and thereby, would help to prompt the possibility of a key gene-based metabolic engineering for the synthesis of active pharmaceutical compounds in S. miltiorrhiza.
Rational engineering to produce biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Here we capitalized on our previously described gene-to-metabolite network in order to engineer rosmarinic acid (RA) biosynthesis pathway for the production of beneficial RA and lithospermic acid B (LAB) in Salvia miltiorrhiza hairy root cultures. Results showed their production was greatly elevated by (1) overexpression of single gene, including cinnamic acid 4-hydroxylase (c4h), tyrosine aminotransferase (tat), and 4-hydroxyphenylpyruvate reductase (hppr), (2) overexpression of both tat and hppr, and (3) suppression of 4-hydroxyphenylpyruvate dioxygenase (hppd). Co-expression of tat/hppr produced the most abundant RA (906 mg/liter) and LAB (992 mg/liter), which were 4.3 and 3.2-fold more than in their wild-type (wt) counterparts respectively. And the value of RA concentration was also higher than that reported before, that produced by means of nutrient medium optimization or elicitor treatment. It is the first report of boosting RA and LAB biosynthesis through genetic manipulation, providing an effective approach for their large-scale commercial production by using hairy root culture systems as bioreactors.
BackgroundIsatis indigotica Fort. is one of the most commonly used traditional Chinese medicines. Its antiviral compound is a kind of lignan, which is formed with the action of dirigent proteins (DIR). DIR proteins are members of a large family of proteins which impart stereoselectivity on the phenoxy radical-coupling reaction, yielding optically active lignans from two molecules of E-coniferyl alcohol. They exist in almost every vascular plant. However, the DIR and DIR-like protein gene family in I. indigotica has not been analyzed in detail yet. This study focuses on discovery and analysis of this protein gene family in I. indigotica for the first time.ResultsAnalysis of transcription profiling database from I. indigotica revealed a family of 19 full-length unique DIR and DIR-like proteins. Sequence analysis found that I. indigotica DIR and DIR-like proteins (IiDIR) were all-beta strand proteins, with a signal peptide at the N-terminus. Phylogenetic analysis of the 19 proteins indicated that the IiDIR genes cluster into three distinct subfamilies, DIR-a, DIR-b/d, and DIR-e, of a larger plant DIR and DIR-like gene family. Gene-specific primers were designed for 19 unique IiDIRs and were used to evaluate patterns of constitutive expression in different organs. It showed that most IiDIR genes were expressed comparatively higher in roots and flowers than stems and leaves.ConclusionsNew DIR and DIR-like proteins were discovered from the transcription profiling database of I. indigotica through bioinformatics methods for the first time. Sequence characteristics and transcript abundance of these new genes were analyzed. This study will provide basic data necessary for further studies.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-388) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.