Exceptionally preserved fossil biotas of the Burgess Shale and a handful of other similar Cambrian deposits provide rare but critical insights into the early diversification of animals. The extraordinary preservation of labile tissues in these geographically widespread but temporally restricted soft-bodied fossil assemblages has remained enigmatic since Walcott’s initial discovery in 1909. Here, we demonstrate the mechanism of Burgess Shale-type preservation using sedimentologic and geochemical data from the Chengjiang, Burgess Shale, and five other principal Burgess Shale-type deposits. Sulfur isotope evidence from sedimentary pyrites reveals that the exquisite fossilization of organic remains as carbonaceous compressions resulted from early inhibition of microbial activity in the sediments by means of oxidant deprivation. Low sulfate concentrations in the global ocean and low-oxygen bottom water conditions at the sites of deposition resulted in reduced oxidant availability. Subsequently, rapid entombment of fossils in fine-grained sediments and early sealing of sediments by pervasive carbonate cements at bed tops restricted oxidant flux into the sediments. A permeability barrier, provided by bed-capping cements that were emplaced at the seafloor, is a feature that is shared among Burgess Shale-type deposits, and resulted from the unusually high alkalinity of Cambrian oceans. Thus, Burgess Shale-type preservation of soft-bodied fossil assemblages worldwide was promoted by unique aspects of early Paleozoic seawater chemistry that strongly impacted sediment diagenesis, providing a fundamentally unique record of the immediate aftermath of the “Cambrian explosion.”
Laurentia, the Oryctocephalus indicus Zone in the Indian Himalaya and North Greenland, near the base of the Delamaran Stage in Australia, and within the Eccaparadocides sdzuyi Zone in Iberia and the Ornamentaspis frequens Zone in Morocco.
A new genus and species of edrioasteroid grade echinoderm, Kailidiscus chinensis, is described from the Kaili Biota of the basal lower Middle Cambrian Kaili Formation from Guizhou Province, China. This echinoderm has a strong resemblance to isorophid edrioasteroids, bearing a well-developed peripheral rim, long curved ambulacra, and slightly imbricate interambulacral plating at maturity. However, the presence of pore-bearing, double biserial floor plates, tiered cover plates, lack of radially positioned oral frame plates, and unincorporated hydropore/gonopore are unknown in isorophids. Many of these features bear strong resemblance to eocrinoids and helicoplacoids, attesting to the plesiomorphic nature of this taxon. Despite the obvious anatomical differences, specimens of this species preserve a complete ontogeny that resembles that of isorophids. Juveniles show a discoidal theca with straight ambulacra that transitions to an inflated theca with strongly curved ambulacra with maturity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.