Homalozoans include four classes of non-pentamerous Paleozoic echinoderms: Homostelea (cinctans), Ctenocystoidea (ctenoid-bearing homalozoans), Homoiostelea (solutes), and Stylophora (cornutes and mitrates). Their atypical morphologies have historically made it difficult to relate them to other classes. Therefore, their systematic positions have been represented by two hypotheses (H): as stem taxa to echinoderms (H1) or as stem taxa to chordates (H2). These conclusions rest on previous inability to recognize synapomorphies with more crownward echinoderms, resulting in a forcing of the homalozoans down the phylogenetic tree that is more artifactual than evolutionary. The Extraxial-Axial Theory (EAT) identifies body-wall homologies, common ontogenetic patterns, and major events in bodyplan evolution. Therefore, the EAT can identify synapomorphies among even the most disparate of echinoderms. Application of the EAT undermines both H1 and H2 and strongly suggests that the bizarre asymmetry of homalozoans is a derived characteristic, and not indicative of plesiomorphic morphology for either chordates or echinoderms. Each of the four homalozoan clades and their major features are reexamined using the EAT. New findings are presented concerning homologies of thecal body wall, but we focus on stems, arms, and brachioles, which are recognized as very distinct products of independent evolutionary events. The results support a new interpretation (H3) of homalozoans as a polyphyletic assemblage that can be parsed out into other, clearly echinoderm clades. The Homoiostelea and Homostelea share the blastozoan synapomorphy of a brachiole. The enigmatic Ctenocystoidea also seem to have brachioles. The Stylophora have an arm as in crinoids. H3 is also more congruent with the known fossil record. Although they are stratigraphically early echinoderms, homalozoans are not indicative of the plesiomorphic morphology of the phylum.
The distribution of all known Cambrian echinoderm taxa, encompassing both articulated specimens and taxonomically diagnostic isolated ossicles, is documented for the first time. The database described by 2011 comprises 188 species recorded from 65 formations from around the world. Formations that have yielded articulated echinoderms are unequally distributed in space and time. Only Laurentia and West Gondwana provide reasonably complete records at the resolution of Stage. The review of the biogeographical distributions of the eight major echinoderm clades shows that faunas from Laurentia and Northeast Gondwana (China and Korea) are distinct from those of West Gondwana and Southeast Gondwana (Australia); other regions are too poorly sampled to make firm palaeobiogeographical statements. Analysis of alpha diversity (species per formation) shows that diversity rose initially to Cambrian Stage 5, declined into Guzhangian and Paibian before returning to Stage 5 levels by the end of the Cambrian. This pattern is replicated in Laurentia and West Gondwana. We show that taxonomically diagnostic ossicles found in isolation typically occur significantly earlier than the first articulated specimens of the same taxa and provide important information on the first occurrence and palaeobiogeographical distribution of key taxa, and of the phylum as a whole.Supplementary material:Articulated Cambrian echinoderms and Isolated plates of Cambrian echinoderms are provided at:http://www.geolsoc.org.uk/SUP18668
Stylophora and Homoiostelea are the largest classes of the subphylum Homalozoa. They have also been placed in the Calcichordata but that position is herein rejected. Stylophorans are divided into two orders the Cornuta and Ankyroida: cornutes have asymmetrical thecae, aulacophores with stylocones and cover plates over the food groove that open widely; ankyroids have essentially bilaterally symmetrical thecae, aulacophores with styloids and in most the cover plates do not open widely. Epispires, cothurnopores, and lamellipores in cornutes are respiratory structures not atypical of early echinoderms and are only superficially similar to chordate gill slits. The superior and inferior faces of cornute and ankyroid thecae and the aulacophores are homologous. There is no evidence that ‘mitrates’ (most ankyroids) are inverted or their aulacophores(calcichordate tail) have been lost and re-evolved.Homoiosteles are superficially similar to stylophorans: the column or stele resembles the aulacophore and the theca in younger genera develope distinct marginal and somatic plate patterns. The earliest homoiosteles are attached by a holdfast, at least in juvenile stages, and this fixation may have imprinted some morphological features on steles of vagile genera. Earliest homoiosteles share significant characters with coeval species of the eocrinoid Gogia and it serves as outgroup.Cladograms for Stylophora and Homoiostelea were generated by NONA, a phylogenetic program for personal computers.
A new genus and species of edrioasteroid grade echinoderm, Kailidiscus chinensis, is described from the Kaili Biota of the basal lower Middle Cambrian Kaili Formation from Guizhou Province, China. This echinoderm has a strong resemblance to isorophid edrioasteroids, bearing a well-developed peripheral rim, long curved ambulacra, and slightly imbricate interambulacral plating at maturity. However, the presence of pore-bearing, double biserial floor plates, tiered cover plates, lack of radially positioned oral frame plates, and unincorporated hydropore/gonopore are unknown in isorophids. Many of these features bear strong resemblance to eocrinoids and helicoplacoids, attesting to the plesiomorphic nature of this taxon. Despite the obvious anatomical differences, specimens of this species preserve a complete ontogeny that resembles that of isorophids. Juveniles show a discoidal theca with straight ambulacra that transitions to an inflated theca with strongly curved ambulacra with maturity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.