We perform tunneling measurements on indium antimonide nanowire/superconductor hybrid devices fabricated for the studies of Majorana bound states. At finite magnetic field, resonances that strongly resemble Majorana bound states, including zero-bias pinning, become common to the point of ubiquity. Since Majorana bound states are predicted in only a limited parameter range in nanowire devices, we seek an alternative explanation for the observed zero-bias peaks. With the help of a self-consistent Poission-Schrödinger multiband model developed in parallel, we identify several families of trivial subgap states which overlap and interact, giving rise to a crowded spectrum near zero energy and zero-bias conductance peaks in experiments. These findings advance the search for Majorana bound states through improved understanding of broader phenomena found in superconductor-semiconductor systems.
A mesoscale, variational simulation of grain growth in two-dimensions has been used to explore the effects of grain boundary properties on the grain boundary character distribution. Anisotropy in the grain boundary energy has a stronger influence on the grain boundary character distribution than anisotropy in the grain boundary mobility. As grain growth proceeds from an initially random distribution, the grain boundary character distribution reaches a steady state that depends on the grain boundary energy. If the energy depends only on the lattice misorientation, then the population and energy are related by the Boltzmann distribution. When the energy depends on both lattice misorientation and boundary orientation, the steady state grain boundary character distribution is more complex and depends on both the energy and changes in the gradient of the energy with respect to orientation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.