During apoptosis, dying cells are swiftly removed by phagocytes. How apoptotic cells are recognized by phagocytes is not fully understood. Here we report the identification and characterization of the C. elegans ttr-52 gene, which is required for efficient cell corpse engulfment and encodes a transthyretin-like protein. The TTR-52 protein is expressed in and secreted from C. elegans endoderm and clusters around apoptotic cells. Genetic analysis indicates that TTR-52 acts in the cell corpse engulfment pathway mediated by CED-1, CED-6, and CED-7 and affects clustering of the phagocyte receptor CED-1 around apoptotic cells. Interestingly, TTR-52 recognizes surface exposed phosphatidylserine (PS) in vivo and binds to both PS and the extracellular domain of CED-1 in vitro. Therefore, TTR-52 is the first bridging molecule identified in C. elegans that mediates recognition of apoptotic cells by cross-linking the PS “eat me” signal with the phagocyte receptor CED-1.
Phagocytosis of apoptotic cells requires recognition of cell corpses followed by internalization and enclosure within plasma membrane-derived phagosomes. Phagosomes undergo maturation to generate phagolysosomes in which cell corpses are degraded; however, regulation of the maturation process is poorly understood. Here, we identified Rab GTPase 14, which regulates apoptotic cell degradation in
Caenorhabditis elegans
.
rab-14
mutants accumulate many persistent cell corpses owing to defective cell corpse clearance. Loss of
rab-14
function affects several steps of phagosome maturation including phagosomal acidification and phagolysosome formation. RAB-14 and UNC-108/RAB2 are recruited to phagosomes at a similar stage and function redundantly to regulate phagosome maturation. Three Rabs, RAB-14, UNC-108/RAB2, and RAB-7, act in sequential steps to control phagolysosome formation. RAB-14 and UNC-108 recruit lysosomes, whereas RAB-7 mediates fusion of lysosomes to phagosomes. Our data reveal the sequential action of Rab GTPases in regulating tethering, docking, and fusion of lysosomes to apoptotic cell-containing phagosomes.
During apoptosis, the dying cell activates an intrinsic mechanism that quickly dismantles itself. The apoptotic cell corpses are then recognized and removed by neighboring cells or professional phagocytes. How dying cells are degraded after internalization is poorly understood. Here, we report the identification and characterization of unc-108, the Caenorhabditis elegans homolog of the human Rab GTPase 2, as a novel component involved in the degradation of apoptotic cells. unc-108 is expressed and functions in the engulfing cells and is likely to affect the degradation rather than the internalization of cell corpses. Similar to other Rab GTPases, unc-108 also affects endocytosis, acting in the endosomal trafficking from early to late endosome and late endosome to lysosome. UNC-108 co-localizes with RAB-5, RAB-7 and LMP-1 to the phagosome and promotes cell corpse degradation, possibly by mediating phagosome maturation.
The Hippo signaling pathway regulates tissue growth in Drosophila through the transcriptional coactivator Yorkie (Yki). How Yki activates target gene transcription is poorly understood. Here, we identify Nuclear receptor coactivator 6 (Ncoa6), a subunit of the Trithorax-related (Trr) histone H3 lysine 4 (H3K4) methyltransferase complex, as a Yki-binding protein. Like Yki, Ncoa6 and Trr are functionally required for Hippo-mediated growth control and target gene expression. Strikingly, artificial tethering of Ncoa6 to Sd is sufficient to promote tissue growth and Yki target expression even in the absence of Yki, underscoring the importance of Yki-mediated recruitment of Ncoa6 in transcriptional activation. Consistent with the established role for the Trr complex in histone methylation, we show that Yki, Ncoa6, and Trr are required for normal H3K4 methylation at Hippo target genes. These findings shed light on Yki-mediated transcriptional regulation and uncover a potential link between chromatin modification and tissue growth.DOI:
http://dx.doi.org/10.7554/eLife.02564.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.