Enteroviruses show a high degree of sequence variation both between and within serotypes due to the lack of proofreading of the viral RNA-dependent RNA polymerase. In addition, recombination is known to occur not only within but also between different serotypes. We have previously shown that capsid coding sequences of coxsackievirus B4 (CVB4) cluster in several coexisting genotypes (intergenotypic nucleotide difference of 12 % or more) whereas a single lineage of echovirus 30 (EV30) has been prevailing and evolving throughout the last two decades. In the major capsid gene, VP1, clustering of both nucleotide and amino acid sequences correlates with serotype. We have now determined a 501 nucleotide sequence in the non-structural 3CD region of CVB4 and EV30 field strains. Phylogenetic analysis revealed that sequences of Human enterovirus B (HEV-B) were segregated in the 3CD region into three distinct clusters without the VP1-associated serotype/genotype correlation. One of the clusters comprised the E2 strain of CVB4, the EV30 prototype and five other CVB4 field strains whereas the other two clusters, in addition to CVB4 and EV30 strains, also included other HEV-B serotypes. We believe that intertypic recombination is the most likely explanation for the observed incongruence. Similarity analysis based on complete genomes of the CVB4 and EV30 prototypes and the CVB4 E2 strain revealed that a putative recombination spot was mapped within the 2B gene. The incongruence observed in the two genomic domains (P1 and P3) suggests a certain degree of independent evolution, which may be explained by interserotypic recombination within an enterovirus species. It is thus difficult to exclude recombination in the history of any given strain.
Turbo charged SI engines are a major possibility in the current trend of down-sized engines with preserved drivability performance. Considering control and supervision it is favorable to have a mean value model to be used e.g. in observer design. Such models of turbo engines are similar to those of naturally aspirated engines, but there are some special characteristics, e.g. the interconnected gas flows, the intercooler, the difference in relative sizes between the gas volumes (compared to naturally aspirated engines), the turbo, and the waste gate. Here, a model is developed with a strategy to find a model for each engine component (air filter, compressor, after cooler (or intercooler), throttle, engine, turbine, waste gate, and a lumped model for the catalyst and exhaust) as they behave in an engine setting. When investigating agreement with measured data and sensitivity of possible model structures, a number of interesting issues are raised. The experiments and the model validation have been performed on a Saab 2.3 l production engine.
Mean value cylinder air charge (CAC) estimation models for control and diagnosis are investigated on turbocharged SI-engines. Two topics are studied; Firstly CAC changes due to fuel enrichment and secondly CAC sensitivity to exhaust manifold pressure changes. The objective is to find a CAC model suitable for control and diagnosis. Measurements show that CAC models based on volumetric efficiency gives up to 10% error during fuel enrichment. The error is caused by the cooling effect that the fuel has as it evaporates and thus increases the charge density. To better describe the CAC during fuel enrichment a simple one parameter model is proposed which reduces the CAC estimation error on experimental data from 10% to 3%. With active wastegate control, the pressure changes in the exhaust manifold influences the CAC. The magnitude of this influence is investigated using sensitivity analysis on an exhaust manifold pressure dependent CACmodel. From the sensitivity analysis it can be concluded, that the CAC is most sensitive to exhaust manifold pressure changes for low intake manifold pressures (part load). Without taking the exhaust manifold pressure into account the CAC error is approximately 5% when the wastegate is opened at part load. The exhaust manifold pressure dependent CAC model is then augmented with the charge cooling model and the total model gives precise agreement on experimental data. The resulting model is thus highly suitable for CAC estimation for control and diagnosis of turbocharged SI-engines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.