A primary aim of microbial ecology is to determine patterns and drivers of community distribution, interaction, and assembly amidst complexity and uncertainty. Microbial community composition has been shown to change across gradients of environment, geographic distance, salinity, temperature, oxygen, nutrients, pH, day length, and biotic factors 1-6 . These patterns have been identified mostly by focusing on one sample type and region at a time, with insights extra polated across environments and geography to produce generalized principles. To assess how microbes are distributed across environments globally-or whether microbial community dynamics follow funda mental ecological 'laws' at a planetary scale-requires either a massive monolithic cross environment survey or a practical methodology for coordinating many independent surveys. New studies of microbial environments are rapidly accumulating; however, our ability to extract meaningful information from across datasets is outstripped by the rate of data generation. Previous meta analyses have suggested robust gen eral trends in community composition, including the importance of salinity 1 and animal association 2 . These findings, although derived from relatively small and uncontrolled sample sets, support the util ity of meta analysis to reveal basic patterns of microbial diversity and suggest that a scalable and accessible analytical framework is needed.The Earth Microbiome Project (EMP, http://www.earthmicrobiome. org) was founded in 2010 to sample the Earth's microbial communities at an unprecedented scale in order to advance our understanding of the organizing biogeographic principles that govern microbial commu nity structure 7,8 . We recognized that open and collaborative science, including scientific crowdsourcing and standardized methods 8 , would help to reduce technical variation among individual studies, which can overwhelm biological variation and make general trends difficult to detect 9 . Comprising around 100 studies, over half of which have yielded peer reviewed publications (Supplementary Table 1), the EMP has now dwarfed by 100 fold the sampling and sequencing depth of earlier meta analysis efforts 1,2 ; concurrently, powerful analysis tools have been developed, opening a new and larger window into the distri bution of microbial diversity on Earth. In establishing a scalable frame work to catalogue microbiota globally, we provide both a resource for the exploration of myriad questions and a starting point for the guided acquisition of new data to answer them. As an example of using this Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of r...
Most diploid species arise from single-species ancestors. Hybrid origins of new species are uncommon (except among polyploids) and are documented infrequently in animals. Examples of natural hybridization leading to speciation in mammals are exceedingly rare. Here, we show a Caribbean species of bat (Artibeus schwartzi) has a nuclear genome derived from two nonsister but congeneric species (A. jamaicensis and A. planirostris) and a mitochondrial genome that is from a third extinct or uncharacterized congener. Artibeus schwartzi is self-sustaining, morphologically distinct, and exists in near geographic isolation of its known parent species. Island effects (i.e., area, reduced habitat variability, and geographic isolation) likely have restricted gene flow from parental species into the Caribbean populations of this hybrid lineage, thus contributing to local adaptation and isolation of this newly produced taxon. We hypothesize differential rates of the development of reproductive isolation within the genus and estimate that 2.5 million years was an insufficient amount of time for the development of postzygotic isolation among the three species that hybridized to produce A. schwartzi. Reticulated evolution thus has resulted in a genomic combination from three evolutionary lineages and a transgressive phenotype that is distinct from all other known species of Artibeus. The data herein further demonstrate the phenomenon of speciation by hybridization in mammals is possible in nature.Artibeus | Chiroptera | hybrid speciation | reticulate evolution | transgressive segregation D espite empirical studies documenting the establishment of animal hybrid lineages (1-8), the evolutionary importance of speciation by natural hybridization in animals is unknown and often is considered minor because the offspring of such crosses typically are less fit than either parental species (9, 10). Nearly all reported cases of homoploid speciation events (hybrid speciation without change in chromosome number) (11) in animals are among species of insects or fish (12), and there are only a handful of suspected cases in mammals (13-17). Thus hybrid speciation appears to be especially rare in mammals, a consequence of either unfavorable conditions for hybrid speciation to occur (i.e., ecological, physiological, hybrid zone structure) or a lack of empirically based research (18,19). Here, we describe a zone of admixture on a series of Caribbean islands within which three species of Neotropical bats have hybridized resulting in a novel lineage with species-level distinction. Our genetic and morphometric analyses have identified a unique hybrid zone among species of fruit-eating bats, leading us to the hypothesis that natural hybridization has generated a distinct lineage that exists in these insular populations. Our data also indicate that this phenotypic and genotypic combination is geographically isolated from extant parental species on the southern Lesser Antillean island of Saint Vincent.Two species of fruit-eating bats, Artibeus jamaicensis...
Phylogeographic analysis can be described as the study of the geological and climatological processes that have produced contemporary geographic distributions of populations and species. Here, we attempt to understand how the dynamic process of landscape change on Madagascar has shaped the distribution of a targeted clade of mouse lemurs (genus Microcebus) and, conversely, how phylogenetic and population genetic patterns in these small primates can reciprocally advance our understanding of Madagascar's prehuman environment. The degree to which human activity has impacted the natural plant communities of Madagascar is of critical and enduring interest. Today, the eastern rainforests are separated from the dry deciduous forests of the west by a large expanse of presumed anthropogenic grassland savanna, dominated by the Family Poaceae, that blankets most of the Central Highlands. Although there is firm consensus that anthropogenic activities have transformed the original vegetation through agricultural and pastoral practices, the degree to which closed-canopy forest extended from the east to the west remains debated. Phylogenetic and population genetic patterns in a five-species clade of mouse lemurs suggest that longitudinal dispersal across the island was readily achieved throughout the Pleistocene, apparently ending at ∼55 ka. By examining patterns of both inter-and intraspecific genetic diversity in mouse lemur species found in the eastern, western, and Central Highland zones, we conclude that the natural environment of the Central Highlands would have been mosaic, consisting of a matrix of wooded savanna that formed a transitional zone between the extremes of humid eastern and dry western forest types.phylogeography | climate change | speciation | deforestation | ddRAD
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.