The Phoenix mission investigated patterned ground and weather in the northern arctic region of Mars for 5 months starting 25 May 2008 (solar longitude between 76.5 degrees and 148 degrees ). A shallow ice table was uncovered by the robotic arm in the center and edge of a nearby polygon at depths of 5 to 18 centimeters. In late summer, snowfall and frost blanketed the surface at night; H(2)O ice and vapor constantly interacted with the soil. The soil was alkaline (pH = 7.7) and contained CaCO(3), aqueous minerals, and salts up to several weight percent in the indurated surface soil. Their formation likely required the presence of water.
The light detection and ranging instrument on the Phoenix mission observed water-ice clouds in the atmosphere of Mars that were similar to cirrus clouds on Earth. Fall streaks in the cloud structure traced the precipitation of ice crystals toward the ground. Measurements of atmospheric dust indicated that the planetary boundary layer (PBL) on Mars was well mixed, up to heights of around 4 kilometers, by the summer daytime turbulence and convection. The water-ice clouds were detected at the top of the PBL and near the ground each night in late summer after the air temperature started decreasing. The interpretation is that water vapor mixed upward by daytime turbulence and convection forms ice crystal clouds at night that precipitate back toward the surface.
[1] The Phoenix Mars Lander detected a larger number of short (∼20 s) pressure drops that probably indicate the passage of convective vortices or dust devils. Near-continuous pressure measurements have allowed for monitoring the frequency of these events, and data from other instruments and orbiting spacecraft give information on how these pressure events relate to the seasons and weather phenomena at the Phoenix landing site. Here 502 vortices were identified with a pressure drop larger than 0.3 Pa occurring in the 151 sol mission (L s 76 to 148). The diurnal distributions show a peak in convective vortices around noon, agreeing with current theory and previous observations. The few events detected at night might have been mechanically forced by turbulent eddies caused by the nearby Heimdal crater. A general increase with major peaks in the convective vortex activity occurs during the mission, around L s = 111. This correlates with changes in midsol surface heat flux, increasing wind speeds at the landing site, and increases in vortex density. Comparisons with orbiter imaging show that in contrast to the lower latitudes on Mars, the dust devil activity at the Phoenix landing site is influenced more by active weather events passing by the area than by local forcing.
Results from a wind tunnel study of aerodynamically rough turbulent boundary-layer flow over a sinusoidal surface are presented. The waves had a maximum slope (ak) of 0.5 and two surface roughnesses were used. For the relatively rough surface the flow separated in the wave troughs while for the relatively smooth surface it generally remained attached. Over the relatively smooth-surfaced waves an organized secondary flow developed, consisting of vortex pairs of a scale comparable to the boundary-layer depth and aligned with the mean flow. Large-eddy simulation studies model the flows well and provide supporting evidence for the existence of this secondary flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.