The development of printed and flexible (opto)electronics requires specific materials for the device's electrodes. Those materials must satisfy a combination of properties. They must be electrically conducting, transparent, printable, and flexible. The conducting polymer poly(3,4-ethylenedioxythiophene)− poly(styrenesulfonate) (PEDOT−PSS) is known as a promising candidate. Its conductivity can be increased by 3 orders of magnitude by the secondary dopant diethylene glycol (DEG). This “secondary doping” phenomenon is clarified in a combined photoelectron spectroscopy and scanning probe microscopy investigation. PEDOT−PSS appears to form a three-dimensional conducting network explaining the improvement of its electrical property upon addition of DEG. Polymer light emitting diodes are successfully fabricated using the transparent plastic PEDOT−PSS electrodes instead of the traditionally used indium tin oxide.
All‐organic active matrix addressed displays based on electrochemical smart pixels made on flexible substrates are reported. Each individual smart pixel device combines an electrochemical transistor with an electrochromic display cell, thus resulting in a low‐voltage operating and robust display technology. Poly(3,4‐ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) served as the active material in the electrochemical smart pixels, as well as the conducting lines, of the monolithically integrated active‐matrix display. Different active‐matrix display addressing schemes have been investigated and a matrix display fill factor of 65 % was reached. This is achieved by combining a three‐terminal electrochemical transistor with an electrochromic display cell architecture, in which an additional layer of PEDOT:PSS was placed on top of the display cell counter electrode. In addition, we have evaluated different kinds of electrochromic polymer materials aiming at reaching a high color switch contrast. This work has been carried out in the light of achieving a robust display technology that is easily manufactured using a standard label printing press, which forced us to use the fewest different materials as well as avoiding exotic and complex device architectures. Together, this yields a manufacturing process of only five discrete patterning steps, which in turn promise for that the active matrix addressed displays can be manufactured on paper or plastic substrates in a roll‐to‐roll production procedure.
An organic electronic paper display technology (see Figure and also inside front cover) is presented. The electrochromic display cell together with the addressing electrochemical transistor form simple smart pixels that are included in matrix displays, which are achieved on coated cellulose‐based paper using printing techniques. The ion‐electronic technology presented offers an opportunity to extend existing use of ordinary paper.
[1] Transport and retention of sorbing tracers in a single, altered crystalline rock fracture on a 5 m scale is investigated. We evaluate the results of a comprehensive field study (referred to as Tracer Retention Understanding Experiments, first phase (TRUE-1)), at a 400 m depth of the Ä spö Hard Rock Laboratory (Sweden). A total of 16 breakthrough curves are analyzed, from three test configurations using six radioactive tracers with a broad range of sorption properties. A transport-retention model is proposed, and its applicability is assessed based on available data. We find that the conventional model with an asymptotic power law slope of À3/2 (one-dimensional diffusion into an unlimited rock matrix) is a reasonable approximation for the conditions of the TRUE-1 tests. Retention in the altered rock of the rim zone appears to be significantly stronger than implied by retention properties inferred from generic (unaltered) rock samples. The effective physical parameters which control retention (matrix porosity and retention aperture) are comparable for all three test configurations. The most plausible in situ (rim zone) porosity is in the range 1%-2%, which constrains the effective retention aperture to the range 0.2-0.7 mm. For all sorbing tracers the estimated in situ sorption coefficient appears to be larger by at least a factor of 10, compared to the value inferred from through-diffusion tests using unaltered rock samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.