Organic electrochemical transistors (OECTs) have attracted great attention as they hold significant promise for a variety of applications ranging from printable logic circuits for electronic textiles to drivers for sensors and flat panel display pixels, as well as to artificial synapse for neuromorphic computing. [1] Because of the low working bias, high sensitivity, and stability in aqueous environments, as well as biological and mechanical compatibility with live tissues, OECTs have also recently emerged as a technological solution to a variety of diagnostic and therapeutic applications. [2] A considerable amount of work has focused, for example, on approaches exploiting the principle of OECTs for the development of biomedical tools for chemical and biological sensing, [3] electrophysiological recording, [4] monitoring of cell viability, and barrier tissue integrity, [5] to name just a few. In an OECT, the electroactive polymer constituting the channel is in direct contact with an electrolyte and with the source and drain metal electrodes ( Figure 1A). Because of the soft and permeable nature of the electroactive polymers, ions are able to penetrate into the bulk of the transistor channel. [6] The operation of an OECT relies then on a reversible ion exchange and charge compensation process, which leads to a bulk doping of the organic conducting channel and to a modulation of the electronic conductivity between the source and drain contacts. Hence, OECTs transduce a modulation in the gate voltage (V G ) to a modulation in the drain current (I D ) running through the entire bulk of the channel. The figure-of-merit that quantifies the efficiency of this transduction is the transconductance, defined as g m = ∂I D /∂V G .The current state-of-the-art active material for OECTs is the mixed ion-electron conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The volumetric doping and dedoping of PEDOT:PSS result in a modulation of the drain-source current of several orders of magnitude with a consequent high transconductance. [7] As PEDOT:PSS is doped in its pristine state, and thus highly conducting, the OECT operates in depletion mode. In addition, several polythiophene-based polymers have been reported as efficient electroactive channel materials for enhancement mode OECTs. [8] To date, however, essentially all reported OECTs have relied on hole transport (p-type), while the development of electron Organic electrochemical transistors (OECTs) have been the subject of intense research in recent years. To date, however, most of the reported OECTs rely entirely on p-type (hole transport) operation, while electron transporting (n-type) OECTs are rare. The combination of efficient and stable p-type and n-type OECTs would allow for the development of complementary circuits, dramatically advancing the sophistication of OECT-based technologies. Poor stability in air and aqueous electrolyte media, low electron mobility, and/or a lack of electrochemical reversibility, of available high-...
The use of organic polymers for electronic functions is mainly motivated by the low-end applications, where low cost rather than advanced performance is a driving force. Materials and processing methods must allow for cheap production. Printing of electronics using inkjets or classical printing methods has considerable potential to deliver this. Another technology that has been around for millennia is weaving using fibres. Integration of electronic functions within fabrics, with production methods fully compatible with textiles, is therefore of current interest, to enhance performance and extend functions of textiles. Standard polymer field-effect transistors require well defined insulator thickness and high voltage, so they have limited suitability for electronic textiles. Here we report a novel approach through the construction of wire electrochemical transistor (WECT) devices, and show that textile monofilaments with 10-100 mum diameters can be coated with continuous thin films of the conducting polythiophene poly(3,4-ethylenedioxythiophene), and used to create micro-scale WECTs on single fibres. We also demonstrate inverters and multiplexers for digital logic. This opens an avenue for three-dimensional polymer micro-electronics, where large-scale circuits can be designed and integrated directly into the three-dimensional structure of woven fibres.
All‐organic active matrix addressed displays based on electrochemical smart pixels made on flexible substrates are reported. Each individual smart pixel device combines an electrochemical transistor with an electrochromic display cell, thus resulting in a low‐voltage operating and robust display technology. Poly(3,4‐ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) served as the active material in the electrochemical smart pixels, as well as the conducting lines, of the monolithically integrated active‐matrix display. Different active‐matrix display addressing schemes have been investigated and a matrix display fill factor of 65 % was reached. This is achieved by combining a three‐terminal electrochemical transistor with an electrochromic display cell architecture, in which an additional layer of PEDOT:PSS was placed on top of the display cell counter electrode. In addition, we have evaluated different kinds of electrochromic polymer materials aiming at reaching a high color switch contrast. This work has been carried out in the light of achieving a robust display technology that is easily manufactured using a standard label printing press, which forced us to use the fewest different materials as well as avoiding exotic and complex device architectures. Together, this yields a manufacturing process of only five discrete patterning steps, which in turn promise for that the active matrix addressed displays can be manufactured on paper or plastic substrates in a roll‐to‐roll production procedure.
The communication outposts of the emerging Internet of Things are embodied by ordinary items, which desirably include all-printed flexible sensors, actuators, displays and akin organic electronic interface devices in combination with silicon-based digital signal processing and communication technologies. However, hybrid integration of smart electronic labels is partly hampered due to a lack of technology that (de)multiplex signals between silicon chips and printed electronic devices. Here, we report all-printed 4-to-7 decoders and seven-bit shift registers, including over 100 organic electrochemical transistors each, thus minimizing the number of terminals required to drive monolithically integrated all-printed electrochromic displays. These relatively advanced circuits are enabled by a reduction of the transistor footprint, an effort which includes several further developments of materials and screen printing processes. Our findings demonstrate that digital circuits based on organic electrochemical transistors (OECTs) provide a unique bridge between all-printed organic electronics (OEs) and low-cost silicon chip technology for Internet of Things applications.
Precise control over processing, transport and delivery of ionic and molecular signals is of great importance in numerous fields of life sciences. Integrated circuits based on ion transistors would be one approach to route and dispense complex chemical signal patterns to achieve such control. To date several types of ion transistors have been reported; however, only individual devices have so far been presented and most of them are not functional at physiological salt concentrations. Here we report integrated chemical logic gates based on ion bipolar junction transistors. Inverters and nAnD gates of both npn type and complementary type are demonstrated. We find that complementary ion gates have higher gain and lower power consumption, as compared with the single transistor-type gates, which imitates the advantages of complementary logics found in conventional electronics. Ion inverters and nAnD gates lay the groundwork for further development of solid-state chemical delivery circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.