The polytheonamides are among the most complex and biosynthetically distinctive natural products known to date. These potent peptide cytotoxins are derived from a ribosomal precursor processed by 49 mostly non-canonical posttranslational modifications. Since the producer is a "microbial dark matter" bacterium only distantly related to any cultivated organism, >70-step chemical syntheses have been developed to access these unique compounds. Here we mined prokaryotic diversity to establish a synthetic platform based on the new host Microvirgula aerodenitrificans that produces hypermodified peptides within two days. Using this system, we generated the aeronamides, new polytheonamide-type compounds with near-picomolar cytotoxicity. Aeronamides, as well as the polygeonamides produced from deep-rock biosphere DNA, contain the highest numbers of D-amino acids in known biomolecules. With increasing bacterial genomes being sequenced, similar host mining strategies might become feasible to access further elusive natural products from uncultivated life.
Relationships and variability of bio-optical properties in coastal waters are investigated. Optical proxies indicate that these coastal waters are optically complex and highly variable and are categorized as follows: (1) relatively clear and dominated by high index of refraction, biogenic particles, (2) more turbid, consisting of mostly inorganic particles and little phytoplankton, (3) extremely turbid with high concentrations of inorganic particles, and (4) more turbid and dominated by biogenic particles. We present a method, alternative to traditional remote-sensing algorithms, of classifying coastal waters [the Spectral Angle Mapper (SAM)] and utilize the SAM to successfully isolate plume conditions in time series of downwelling irradiance and total absorption coefficient. We conclude with a discussion of the use of the SAM for coastal management operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.