Dedicated to Dr. Konrad Henkel on the occasion of his 70th birthdaySilicon and carbon may be looked upon as the two fundamental antipodes with respect to the naturally occurring forms of matter and life on earth: Silicon plays the key role in the "petrification" of inanimate matter, while carbon is the representative element for the "incarnation'' of living organisms. If a scientist were to search for a highly efficient method of uniting inorganic and organic matter, he would, at a very early stage of attempting to solve this problem, combine these two natural principles of matter and think of "bireactive" molecules containing a silicon functionality for bonding to inorganic material on the one hand and a carbon functionality for anchoring to an organic counterpart on the other. The title compounds and their derivatives epitomize such molecules: they are wanderers between both (chemical) worlds. Owing to their bifunctionality they are capable of binding to inorganic (especially siliceous) systems as well as to organic polymers. Whether their commercial application concerns the strengthening of polyester resins with glass fibers for use in boatbuilding or the incorporation of silica as a filler in rubber mixtures for the manufacture of wear-resistant tires or even the immobilization of enzymes on glass spheres for carrying out reactions in enzyme reactors-in all cases organofunctionalized silanes guarantee a reliable and permanent union between two otherwise "incompatible" material systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.