Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip â microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug speci®c-ally targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa bio®lms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response.
With the widespread appearance of antibiotic-resistant bacteria, there is an increasing demand for novel strategies to control infectious diseases. Furthermore, it has become apparent that the bacterial life style also contributes significantly to this problem. Bacteria living in the biofilm mode of growth tolerate conventional antimicrobial treatments. The discovery that many bacteria use quorum-sensing (QS) systems to coordinate virulence and biofilm development has pointed out a new, promising target for antimicrobial drugs. We constructed a collection of screening systems, QS inhibitor (QSI) selectors, which enabled us to identify a number of novel QSIs among natural and synthetic compound libraries. The two most active were garlic extract and 4-nitro-pyridine-N-oxide (4-NPO). GeneChip-based transcriptome analysis revealed that garlic extract and 4-NPO had specificity for QS-controlled virulence genes in Pseudomonas aeruginosa. These two QSIs also significantly reduced P. aeruginosa biofilm tolerance to tobramycin treatment as well as virulence in a Caenorhabditis elegans pathogenesis model. Several bacteria show organized behavior when they establish themselves in the eukaryotic host (22). The invading bacteria express a battery of tissue-damaging virulence factors in accordance with their numbers in a process termed quorum sensing (QS) (16). This is accomplished by sensing the concentration of small, diffusible signal molecules produced by the bacteria themselves. In gram-negative bacteria, the signals are N-acyl homoserine lactones (AHLs), which are produced by the LuxI family of AHL synthases. The signal molecules differ with respect to the length of their side chains (C4 to C16) and with various degrees of substitution and saturation (34). Shortchain AHLs are freely diffusible over the cell membranes, whereas long-chain AHLs are the substrate of efflux pumps, such as mexAB-oprM (36). The AHLs are sensed by proteins belonging to the LuxR family of response regulators. LuxR homologues contain two domains, an AHL binding domain and a DNA binding domain. When AHL is bound, it alters the configuration of the LuxR homologue protein, enabling it to interact with DNA and act as a transcriptional activator (16). It should be noted that some LuxR homologues acts as repressors, blocking transcription in the absence of AHL and, when sufficient AHL is present, derepressing the target gene(s) (6). The two key components of the QS system, the luxI and luxR homologues, are often linked genes, whereas the QS target genes are localized elsewhere on the genome. In case of Vibrio fischeri, the AHL synthase gene itself is a target gene of the QS mechanism, creating an autoinduction loop, which at the triggering (or threshold) AHL concentration gives rise to a burst in AHL production and QS-controlled gene expression.It has recently become evident that QS target genes are not generally activated at a certain threshold concentration but merely become activated as a continuum at different AHL-cell concentrations (23,40). Pseud...
A beta-glucoside encoded by a cloned Zea mays complementary DNA (Zm-p60.1) cleaved the biologically inactive hormone conjugates cytokinin-O-glucosides and kinetin-N3-glucoside, releasing active cytokinin. Tobacco protoplasts that transiently expressed Zm-p60.1 could use the inactive cytokinin glucosides to initiate cell division. The ability of protoplasts to sustain growth in response to cytokinin glucosides persisted indefinitely after the likely disappearance of the expression vector. In the roots of maize seedlings, Zm-p60.1 was localized to the meristematic cells and may function in vivo to supply the developing maize embryo with active cytokinin.
The potential of a bacterial toxin-antitoxin gene system for use in containment control in eukaryotes was explored. The Escherichia coli relE and relB genes were expressed in the yeast Saccharomyces cerevisiae. Expression of the relE gene was highly toxic to yeast cells. However, expression of the relB gene counteracted the effect of relE to some extent, suggesting that toxin-antitoxin interaction also occurs in S. cerevisiae. Thus, bacterial toxin-antitoxin gene systems also have potential applications in the control of cell proliferation in eukaryotic cells, especially in those industrial fermentation processes in which the escape of genetically modified cells would be considered highly risky.
A beta-glucosidase that cleaves the biologically inactive hormone conjugates cytokinin-O- and kinetin-N3-glucosides is encoded by the maize Zm-p60.1 gene. The expression of the Zm-p60.1 gene was analyzed by Northern blot analysis and in-situ hybridization. It was found that the expression levels of the Zm-p60.1-specific mRNA changed after pollination of carpellate inflorescences. The Zm-p60.1 cDNA was expressed in E. coli and antibodies were raised against this protein. An antibody was used to determine the tissue-specific localization of this protein. By in situ immunolocalization experiments, this protein was found to be located in cell layers below the epidermis and around the vascular bundles of the coleoptile. In the primary leaf, the Zm-p60.1 protein was detected in cells of the outermost cell layer and around the vascular tissue. In floral tissue, Zm-p60.1 was present in the glumes, the carpels and in the outer cell layer of the style. In coleoptiles, as determined by immuno-electronmicroscopy, the Zmp60.1 protein was located exclusively in the plastids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.