Nanoparticle complexes were prepared from chitosans of various molecular weights (MW) and degrees of deacetylation (DD). The antimicrobial effect was assessed by the Live/Dead BacLight technique in conjunction with confocal scanning laser microscopy (CSLM) and image analysis. Nanocomplexes prepared from chitosans with high MW showed a low antimicrobial effect (20 to 25% of cells damaged), whereas those prepared from low-MW chitosans showed high antimicrobial effect (>95% of cells damaged).
The attenuated diarrheagenic E. coli strain transiently induced mild symptoms of a food-borne infection, with complete recovery of reported clinical symptoms within 2 d. The present diarrheagenic E. coli challenge trial conducted in healthy adults indicates that a milk concentrate rich in natural, bioactive phospho- and sphingolipids from the MFGM may improve in vivo resistance to diarrheagenic E. coli. This trial was registered at clinicaltrials.gov as NCT01800396.
The present work reports for the first time the purification and characterisation of two extremely halotolerant endo-xylanases from a novel halophilic bacterium, strain CL8. Purification of the two xylanases, Xyl 1 and 2, was achieved by anion exchange and hydrophobic interaction chromatography. The enzymes had relative molecular masses of 43 kDa and 62 kDa and pI of 5.0 and 3.4 respectively. Stimulation of activity by Ca(2+), Mn(2+), Mg(2+), Ba(2+), Li(2+), NaN(3) and isopropanol was observed. The K(m) and V(max) values determined for Xyl 1 with 4- O-methyl- d-glucuronoxylan are 5 mg/ml and 125,000 nkat/mg respectively. The corresponding values for Xyl 2 were 1 mg/ml and 143,000 nkat/mg protein. Xylobiose and xylotriose were the major end products for both endoxylanases. The xylanases were stable at pH 4-11 showing pH optima around pH 6. Xyl 1 shows maximal activity at 60 degrees C, Xyl 2 at 65 degrees C (at 4 M NaCl). The xylanases showed high temperature stability with half-lives at 60 degrees C of 97 min and 192 min respectively. Both xylanases showed optimal activity at 1 M NaCl, but substantial activity remained for both enzymes at 5 M NaCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.