Developments in the theory of Ostwald ripening since the classic work of I. M.Lifshitz and V. V. Slyozov (LS) are reviewed and directions for future work are suggested. Recent theoretical work on the role of a finite volume fraction of coarsening phase on the ripening behavior of two-phase systems is reformulated in terms of a consistent set of notation through which each of the theories can be compared and contrasted. Although more theoretical work is necessary, these theories are in general agreement on the efTects of a finite volume fraction of coarsening phase on the coarsening behavior of two-phase systems. New work on transient Ostwald ripening is presented which illustrates the broad range of behavior which is possible in this regime. The conditions responsible for the presence of the asymptotic state first discovered by LS, as well as the manner in which this state is approached, are also discussed. The role of elastic fields during Ostwald ripening in solid-solid mixtures is reviewed, and it is shown that these fields can play a dominant role in determining the coarsening behavior of a solid-solid system.
The drive towards increased energy efficiency and reduced air pollution has led to accelerated worldwide development of fuel cells. As the performance and cost of fuel cells have improved, the materials comprising them have become increasingly sophisticated, both in composition and microstructure. In particular, state-of-the-art fuel-cell electrodes typically have a complex micro/nano-structure involving interconnected electronically and ionically conducting phases, gas-phase porosity, and catalytically active surfaces. Determining this microstructure is a critical, yet usually missing, link between materials properties/processing and electrode performance. Current methods of microstructural analysis, such as scanning electron microscopy, only provide two-dimensional anecdotes of the microstructure, and thus limited information about how regions are interconnected in three-dimensional space. Here we demonstrate the use of dual-beam focused ion beam-scanning electron microscopy to make a complete three-dimensional reconstruction of a solid-oxide fuel-cell electrode. We use this data to calculate critical microstructural features such as volume fractions and surface areas of specific phases, three-phase boundary length, and the connectivity and tortuosity of specific subphases.
Semiconductor nanowires show promise for many device applications, but controlled doping with electronic and magnetic impurities remains an important challenge. Limitations on dopant incorporation have been identified in nanocrystals, raising concerns about the prospects for doping nanostructures. Progress has been hindered by the lack of a method to quantify the dopant distribution in single nanostructures. Recently, we showed that atom probe tomography can be used to determine the composition of isolated nanowires. Here, we report the first direct measurements of dopant concentrations in arbitrary regions of individual nanowires. We find that differences in precursor decomposition rates between the liquid catalyst and solid nanowire surface give rise to a heavily doped shell surrounding an underdoped core. We also present a thermodynamic model that relates liquid and solid compositions to dopant fluxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.