We study the twisted compactifications of five-dimensional Seiberg SCFTs, with SU M (2) × E N f +1 flavor symmetry, on a generic Riemann surface that preserves four supercharges. The five-dimensional SCFTs are obtained from the decoupling limit of N D4-branes probing a geometry of N f < 8 D8-branes and an O8-plane. In addition to the R-symmetry, we can also twist the flavor symmetry by turning on background flux on the Riemann surface. In particular, in the string theory construction of the five-dimensional SCFTs, the background flux for the SU M (2) has a geometric origin, similar to the topological twist of the R-symmetry. We argue that the resulting low-energy three-dimensional theories describe the dynamics on the world-volume of the N D4-branes wrapped on the Riemann surface in the O8/D8 background. The Riemann surface can be described as a curve in a Calabi-Yau three-fold that is a sum of two line bundles over it. This allows for an explicit construction of AdS 4 solutions in massive IIA supergravity dual to the worldvolume theories, thereby providing strong evidence that the three-dimensional SCFTs exist in the low-energy limit of the compactification of the five-dimensional SCFTs. We compute observables such as the free energy and the scaling dimensions of operators dual to D2-brane probes; these have non-trivial dependence on the twist parameter for the U (1) in SU M (2). The free energy exhibits the N 5/2 scaling that is emblematic of five-dimensional SCFTs.1 See also [5] for further studies and generalizations of the Seiberg SCFTs. 2 Holographic duals of twisted compactifications of five-dimensional SCFTs were also studied in [16] using six-dimensional F (4) supergravity. There, twist of a U (1) flavor symmetry was considered by adding a vector multiplet to the theory. However it was not proven that the theory considered is a consistent truncation of massive IIA supergravity.
We use the classical double copy to identify a necessary condition for a gauge theory source to constitute a single copy of a solution to Einstein's equations. In the case of four-dimensional Kerr-Schild spacetimes on Minkowski backgrounds, we extend this condition to a parameterization of the corresponding single copies. These are given by Liénard-Wiechert fields of charges on complex worldlines. This unifies the known instances of the double copy black holes on flat four-dimensional backgrounds into a single framework. Furthermore, we use the more generic condition identified to show why the black ring in five dimensions does not admit Kerr-Schild coordinates.
We extend the anomaly inflow methods developed in M-theory to SCFTs engineered via D3-branes in type IIB. We show that the ’t Hooft anomalies of such SCFTs can be computed systematically from their geometric definition. Our procedure is tested in several 4d examples and applied to 2d theories obtained by wrapping D3-branes on a Riemann surface. In particular, we show how to analyze half-BPS regular punctures for 4d $$ \mathcal{N} $$ N = 4 SYM on a Riemann surface. We discuss generalizations of this formalism to type IIB configurations with F3, H3 fluxes, as well as to F-theory setups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.