Abstract. Ensembles of classifiers have the ability to boost classification accuracy comparing to single classifiers and are a commonly used method in the field of machine learning. However in some cases ensemble construction algorithms do not improve the classification accuracy. Mostly ensembles are constructed using specific machine learning method or a combination of methods, the drawback being that the combination of methods or selection of the appropriate method for a specific problem must be made by the user. To overcome this problem we in-vented a novel approach where an ensemble of classifiers is constructed by a self-organizing system applying cellular automata (CA). First results are promising and show that in the iterative process of combining classifiers in the CA, a combination of methods can occur, that leads to superior accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.