At global level, there is a continuing concern for the research and development of alloys for medical and biomedical applications. Metallic biomaterials are used in various applications of the most important medical fields like orthopedic, dental and cardiovascular. The main metallic biomaterials used in human body are stainless steels, Co-based alloys and Ti-based alloys. Titanium and its alloys are of greater interest in medical applications because they exhibit characteristics required for implant materials, namely, good mechanical properties (less elasticity modulus than stainless steel or CoCr alloys, fatigue strength, high corrosion resistance), high biocompatibility. The aim of this review is to describe and compare the main characteristics (mechanical properties, corrosion resistance and biocompatibility) for latest research of nontoxic Ti alloys biomaterials used for medical field.
This study aims to evaluate the corrosion resistance of carbon steel, used for carabiners manufacturing, coated with three different types of phosphate layer. The phosphate layers have been obtained by phosphate conversion coating with three different types of phosphate solutions: zinc-based solution, zinc-iron-based phosphate solution, and manganese-based phosphate solution. Additionally, the test was performed on zinc phosphate samples impregnated with molybdenum bisulfate-based oil and zinc phosphate samples further coated with a layer of elastomer-based paint. Considering the areas where the carabiners are used (civil engineering, navigation, oil industry, rescue operations, etc.), the corrosive environments studied are rainwater, Black Sea water, and fire extinguishing solution. The structure of the deposited layers was studied by scanning electron microscopy, while the interface structure between the alloy and corrosive environment was analyzed by electrochemical impedance spectroscopy. According to this study, the corrosion resistance of zinc-based phosphate coated samples and zinc/iron-based phosphate coated samples is higher than that of the studied carbon steel samples, despite the corrosion environment. Also, the most aggressive corrosion environment was the fire extinguishing solution.
Geopolymers are zeolites like structures based on hydrated aluminosilicates units of SiO4 and AlO4. These units, known as poly(sialate), poly(sialate)-siloxo or poly(sialate)-disiloxo are chemically balanced by the group I cations of K+, Li+, or Na+. Simultaneously, the chemical reaction of formation, known as geopolymerization, governs the orientation of the unit, generating mesoporous structures. Multiple methods can be used for pore structure and porosity characterization. Among them, nuclear magnetic resonance (NMR) relaxometry allows the detection of the porous structure in a completely nonperturbative manner. NMR relaxometry may be used to monitor the relaxation of protons belonging to the liquid molecules confined inside the porous structure and, thus, to get access to the pore size distribution. This monitoring can take place even during the polymerization process. The present study implements transverse relaxation measurements to monitor the influence introduced by the curing time on the residual liquid phase of geopolymers prepared with two different types of reinforcing particles. According to our results, the obtained geopolymers contain three types of pores formed by the arrangement of the OH− and Si groups (Si-OH), Si-O-Si groups, Si-O-Al groups, and Si-O rings. After 48 days, the samples cured for 8 h show a high percentage of all three types of pores, however, by increasing the curing time and the percentage of reinforcing particle, the percent of pores decrease, especially, the gel pores.
Ti-based alloys are accessible for use in the human body due to their good mechanical properties, corrosion resistance, and biocompatibilities. These main properties of alloys are important criteria for choosing biomedical implants for human bones or for other kinds of applications in general medicine. This paper presents a comparison of four new Ti-based alloys desired to satisfy various requirements for biomedical implants. The materials were prepared with recipes for two new system alloys, TiMoZrTa (TMZT) and TiMoSi (TMS), alloys with nontoxic elements. The presented research contains microstructure images, indentation tests, Vickers hardness, XRD, and corrosion resistance, showing better characteristics than most commercial products used as implants (Young’s modulus closer to the human bone).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.