In the search for novel natural compounds endowed with potential antihypertensive activity, a new sulfur-containing indole alkaloid, N-demethylglypetelotine (2), and its known analogue glypetelotine (1), were isolated from the leaves of Glycosmis petelotii. Their structures were established on the basis of spectroscopic evidence. The two alkaloids were assessed for vasorelaxing activity on rat aorta rings and for L-type Ba(2+) current [I(Ba(L))] blocking activity on single myocytes isolated from rat tail artery. Both glypetelotine and N-demethylglypetelotine inhibited phenylephrine-induced contraction with IC50 values of 20 and 50 μM, respectively. The presence of endothelium did not modify their spasmolytic effect. Neither glypetelotine nor N-demethylglypetelotine affected Ca(2+) release from the sarcoplasmic reticulum induced by phenylephrine. The spasmolytic effect of glypetelotine increased with membrane depolarization. In the presence of 60 mM K(+), both compounds inhibited, in a concentration-dependent manner, the contraction induced by cumulative addition of Ca(2+), this inhibition being inversely related to Ca(2+) concentration. Glypetelotine and, less efficiently N-demethylglypetelotine, inhibited I(Ba(L)), the former compound also affecting I(Ba(L)) kinetics. In conclusion, glypetelotine is a novel vasorelaxing agent which antagonizes L-type Ca(2+) channels.
One of the omega-3 essential fatty acids, docosahexaenoic acid (DHA), is a significant constituent of the cell membrane and the precursor of several potent lipid mediators. These mediators are considered to be important in preventing or treating several diseases. Resolvin D5, an oxidized lipid mediator derived from DHA, has been known to exert anti-inflammatory effects. However, the detailed mechanism underlying these effects has not yet been elucidated in human monocytic THP-1 cells. In the present study, we investigated the effects of resolvin D5 on inflammation-related signaling pathways, including the extracellular signal-regulated kinase (ERK)-nuclear factor (NF)-κB signaling pathway. Resolvin D5 downregulated the production of interleukin (IL)-6 and chemokine (C-C motif) ligand 5 (CCL5). Additionally, these inhibitory effects were found to be modulated by mitogen-activated protein kinase (MAPK) and NF-κB in lipopolysaccharide (LPS)-treated THP-1 cells. Resolvin D5 inhibited the LPS-stimulated phosphorylation of ERK and translocation of p65 and p50 into the nucleus, resulting in the inhibition of IL-6 and CCL5 production. These results revealed that resolvin D5 exerts anti-inflammatory effects in LPS-treated THP-1 cells by regulating the phosphorylation of ERK and nuclear translocation of NF-κB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.