The purpose of this study is to develop an artificial muscle actuator suitable for robotic applications, and to demonstrate the feasibility of applying this actuator to an arm mechanism, and controlling it delicately and smoothly like a human being. To accomplish this, we perform the procedures that integrate the soft actuator, called the single body dielectric elastomer actuator, which is very flexible and capable of high speed operation, and the displacement amplification mechanism called the sliding filament joint mechanism, which mimics the sliding filament model of human muscles. In this paper, we describe the characteristics and control method of the actuation system that consists of actuator, mechanism, and embedded controller, and show the experimental results of the closed-loop position and static stiffness control of the robotic arm application. Finally, based on the results, we evaluate the performance of this application.
Insects are one of the most diverse group of animals on the planet and are almost ubiquitous. Their walking locomotion has inspired engineers and provided effective solutions for designing transport methods for legged robots. In this paper, we introduce a hexapod walking robot that mimics the design and walking motions of insects. The robot is characterized by small size, light weight, simple structure, and considerably fast walking speed. Three pairs of its legs are driven by three five-degrees-of-freedom (5DOF) soft actuators based on dielectric elastomer (DE) actuators which can provide up to five movements (including three translations and two rotations) within a compact structure. The robot imitates the crawling motion of an insect using the alternating tripod gait. The experiments show that the robot can achieve an average walking speed of 5.2 cm/s (approximately 21 body-lengths per minute) at 7 Hz of actuation frequency on flat rigid surfaces. Furthermore, the robot also demonstrates the omnidirectional capabilities of walking sideways and rotating its body direction, which enhance the potential of applying the proposed robot in practical uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.