Using techniques of bifurcation theory we present two exact multiplicity results for boundary value problems of the typeThe first result concerns the case when the nonlinearity is independent of x and behaves like a cubic in u. The second one deals with a class of nonlinearities with explicit x dependence.
SynopsisWe consider weakly-coupled elliptic systems of the typewith each fi being either an increasing or a decreasing function of each uj. Assuming the existence of coupled super- and subsolutions, we prove the existence of solutions, and provide a constructive iteration scheme to approximate the solutions. We then apply our results to study the steady-states of two-species interaction in the Volterra–Lotka model with diffusion.
Multiplicity results are provided for two classes of boundary-value problems with cubic nonlinearities, depending on a parameter A. In particular, it is proved that for sufficiently large A, there are exactly two solutions, and that all solutions lie on a single smooth solution curve. The last fact allows one to use continuation techniques to compute all solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.