Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons.
BackgroundAlzheimer’s Disease (AD) and Fronto temporal lobar dementia (FTLD) are common causes of dementia in the aging population for which limited therapeutical options are available. These disorders are associated with Tau accumulation. We have previously shown that CerebrolysinTM (CBL), a neuropeptide mixture with neurotrophic effects, ameliorates the behavioral deficits and neuropathological alterations in amyloid precursor protein (APP) transgenic (tg) mouse model of AD by reducing hyper-phosphorylated Tau. CBL has been tested in clinical trials for AD, however it’s potential beneficial effects in FTLD are unknown. For this purpose we sought to investigate the effects of CBL in a tg model of tauopathy. Accordingly, double tg mice expressing mutant Tau under the mThy-1 promoter and GSK3β (to enhance Tau phosphorylation) were treated with CBL and evaluated neuropathologically.ResultsCompared to single Tau tg mice the Tau/GSK3β double tg model displayed elevated levels of Tau phosphorylation and neurodegeneration in the hippocampus. CBL treatment reduced the levels of Tau phosphorylation in the dentate gyrus and the degeneration of pyramidal neurons in the temporal cortex and hippocampus of the Tau/GSK3β double tg mice. Interestingly, the Tau/GSK3β double tg mice also displayed elevated levels of Dynamin-related protein-1 (Drp-1), a protein that hydrolyzes GTP and is required for mitochondrial division. Ultrastructural analysis of the mitochondria in the Tau/GSK3β double tg mice demonstrated increased numbers and fragmentation of mitochondria in comparison to non-tg mice. CBL treatment normalized levels of Drp-1 and restored mitochondrial structure.ConclusionsThese results suggest that the ability of CBL to ameliorate neurodegenerative pathology in the tauopathy model may involve reducing accumulation of hyper-phosphorylated Tau and reducing alterations in mitochondrial biogenesis associated with Tau.
AimsTo investigate the extent of acute coprescribing in primary care to children on chronic antiepileptic therapy, which could give rise to potentially harmful drug-drug interactions.
DesignAcute coprescribing to children on chronic antiepileptic drug therapy in primary care was assessed in 178 324 children aged 0-17 years for the year 1 November 1999 to 31 October 2000. Computerized prescribing data were retrieved from 161 representative general practices in Scotland.
SettingOne hundred and sixty-one general practices throughout Scotland.
ResultsDuring the study year 723 (0.41%) children chronically prescribed antiepileptic therapy were identified. Fourteen antiepileptic agents were prescribed, with carbamazepine, sodium valproate and lamotrigine accounting for 80% of the total. During the year children on chronic antiepileptic therapy were prescribed 4895 acute coprescriptions for 269 different medicines. The average number of acute coprescriptions for non-epileptic drug therapy were eight, 11, six, and six for the 0-1, 2-4, 5-11, and 12-17-year-olds, respectively. Of these acute coprescriptions 72 (1.5%) prescribed to 22 (3.0%) children were identified as a potential source of clinically serious interactions. The age-adjusted prevalence rates for potentially serious coprescribing were 86, 26, 22, and 33/1000 children chronically prescribed antiepileptic therapy in the 0-1, 2-4, 5-11, and 12-17-year-old age groups, respectively. The drugs most commonly coprescribed which could give rise to such interactions were antacids, erythromycin, ciprofloxacin, theophylline and the low-dose oral contraceptive. For 10 (45.5%0 of the 20 children identified at risk of a potentially clinically serious adverse drug interaction, the acute coprescription was prescribed off label because of age or specific contraindication/warning.
ConclusionsIn primary care, 3.0% of children on chronic antiepileptic therapy are coprescribed therapeutic agents, which could give rise to clinically serious drug-drug interactions.
AEDs and potential drug-drug interactionsBr J Clin Pharmacol 59 :6 713
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.