Many inland waters exhibit complete or partial desiccation, or have vanished due to global change, exposing sediments to the atmosphere. Yet, data on carbon dioxide (CO 2) emissions from these sediments are too scarce to upscale emissions for global estimates or to understand their fundamental drivers. Here, we present the results of a global survey covering 196 dry inland waters across diverse ecosystem types and climate zones. We show that their CO 2 emissions share fundamental drivers and constitute a substantial fraction of the carbon cycled by inland waters. CO 2 emissions were consistent across ecosystem types and climate zones, with local characteristics explaining much of the variability. Accounting for such emissions increases global estimates of carbon emissions from inland waters by 6% (~0.12 Pg C y −1). Our results indicate that emissions from dry inland waters represent a significant and likely increasing component of the inland waters carbon cycle.
Reservoir drawdown areas—where sediment is exposed to the atmosphere due to water-level fluctuations—are hotspots for carbon dioxide (CO2) emissions. However, the global extent of drawdown areas is unknown, precluding an accurate assessment of the carbon budget of reservoirs. Here we show, on the basis of satellite observations of 6,794 reservoirs between 1985 and 2015, that 15% of the global reservoir area was dry. Exposure of drawdown areas was most pronounced in reservoirs close to the tropics and shows a complex dependence on climatic (precipitation, temperature) and anthropogenic (water use) drivers. We re-assessed the global carbon emissions from reservoirs by apportioning CO2 and methane emissions to water surfaces and drawdown areas using published areal emission rates. The new estimate assigns 26.2 (15–40) (95% confidence interval) TgCO2-C yr−1 to drawdown areas, and increases current global CO2 emissions from reservoirs by 53% (60.3 (43.2–79.5) TgCO2-C yr−1). Taking into account drawdown areas, the ratio between carbon emissions and carbon burial in sediments is 2.02 (1.04–4.26). This suggests that reservoirs emit more carbon than they bury, challenging the current understanding that reservoirs are net carbon sinks. Thus, consideration of drawdown areas overturns our conception of the role of reservoirs in the carbon cycle.
Artificial water bodies like ditches, fish ponds, weirs, reservoirs, fish ladders, and irrigation channels are usually constructed and managed to optimize their intended purposes. However, human-made aquatic systems also have unintended consequences on ecosystem services and biogeochemical cycles. Knowledge about their functioning and possible additional ecosystem services is poor, especially compared to natural ecosystems. A GIS analysis indicates that currently only * 10% of European surface waters are covered by the European Water Framework directive, and that a considerable fraction of the excluded systems are likely human-made aquatic systems. There is a clear mismatch between the high possible significance of human-made water bodies and their low representation in scientific research and policy. We propose a research agenda to build an inventory of human-made aquatic ecosystems, support and advance research to further our understanding of the role of these systems in local and global biogeochemical cycles as well as to identify other benefits for society. We stress the need for studies that aim to optimize management of humanmade aquatic systems considering all their functions and to support programs designed to overcome barriers of the adoption of optimized management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.