. Analysis of volatiles from rumen digesta by gas chromatography linked antennogram recordings from Stomoxys calcitrans (L) (Diptera: Muscidae) antennal receptor cells revealed about 30 electrophysiologically active constituents, the most important of which is dimethyl trisulphide with a sensory threshold in the femtogram range. The behavioural responses of S. calcitrans to five chemostimulants (dimethyl trisulphide, butanoic acid, p -cresol, oct-1-en-3-ol and skatole) were tested in a wind tunnel where activation and attraction of hungry flies to rumen volatiles were recorded. Dimethyl trisulphide, butanoic acid and p -cresol were found to attract S. calcitrans . This sensitivity to rumen volatile constituents, that also occur in animal wastes used for oviposition by Stomoxys spp., as well as in flowers used by stable flies as sources of nectar is discussed in the context of the behavioural ecology of these flies.
The current discussion on the safety of transgenic crops includes their effects on beneficial insects, such as parasitoids and predators of pest insects. One important plant trait to consider in this context is the emission of volatiles in response to herbivory. Natural enemies use the odours that result from these emissions as cues to locate their herbivorous prey and any significant change in these plant-provided signals may disrupt their search efficiency. There is a need for practical and reliable methods to evaluate transgenic crops for this and other important plant traits. Moreover, it is imperative that such evaluations are done in the context of variability for these traits among conventional genotypes of a crop. For maize and the induction of volatile emissions by caterpillar feeding this variability is known and realistic comparisons can therefore be made. Here we used a six-arm olfactometer that permits the simultaneous collection of volatiles emitted by multiple plants and testing of their attractiveness to insects. With this apparatus we measured the induced odour emissions of Bt maize (Bt11, N4640Bt) and its near-isogenic line (N4640) and the attractiveness of these odours to Cotesia marginiventris and Microplitis rufiventris, two important larval parasitoids of common lepidopteran pests. Both parasitoid species were strongly attracted to induced maize odour and neither wasp distinguished between the odours of the transgenic and the isogenic line. Also wasps that had previously experienced one of the odours during a successful oviposition divided their choices equally between the two odours. However, chemical analyses of collected odours revealed significant quantitative differences. The same 11 compounds dominated the blends of both genotypes, but the isogenic line released a larger amount of most of these. These differences may be due to altered resource allocation in the transgenic line, but it had no measurable effect on the wasps' behaviour. All compounds identified here had been previously reported for maize and the differential quantities in which they were released fall well within the range of variability observed for other maize genotypes.
.Horse and cow dung were tested as substrates for oviposition by the stable fly Stomoxys calcitrans (L) (Diptera: Muscidae) in laboratory cages. Odour alone from either horse or cow dung was sufficient to attract flies for oviposition. This was confirmed in wind tunnel experiments, where both horse and cow dung were shown to attract gravid stable flies. However, when S. calcitrans was offered a choice between these two oviposition substrates, flies always chose horse dung over cow dung, both when allowed to contact the substrates and when relying on dung odour alone. Analyses of volatile compounds emanating from horse and cow dung by gas chromatography linked antennogram recordings from S. calcitrans antennae revealed no differences in the chemostimuli released from the two substrates. The predominant chemostimulant compounds in both substrates were carboxylic acids (butanoic acid), alcohols (oct-1-en-3-ol), aldehydes (decanal), ketones (octan-3-one), phenols ( p -cresol), indoles (skatole), terpenes (  -caryophyllene) and sulphides (dimethyl trisulphide). Higher levels (20 -40 p.p.m.) of carbon dioxide were recorded over horse dung compared with cow dung, a factor that may contribute to the preference exhibited by S. calcitrans for this substrate for oviposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.