Abstract-In this paper, we aim at reducing power consumption in wireless sensor networks by turning off supernumerary sensors. Random simplicial complexes are tools from algebraic topology which provide an accurate and tractable representation of the topology of wireless sensor networks. Given a simplicial complex, we present an algorithm which reduces the number of its vertices, keeping its homology (i.e. connectivity, coverage) unchanged. We show that the algorithm reaches a Nash equilibrium, moreover we find both a lower and an upper bounds for the number of vertices removed, the complexity of the algorithm, and the maximal order of the resulting complex for the coverage problem. We also give some simulation results for classical cases, especially coverage complexes simulating wireless sensor networks.
Abstract. This paper aims to validate the β-Ginibre point process as a model for the distribution of base station locations in a cellular network. The β-Ginibre is a repulsive point process in which repulsion is controlled by the β parameter. When β tends to zero, the point process converges in law towards a Poisson point process. If β equals to one it becomes a Ginibre point process. Simulations on real data collected in Paris (France) show that base station locations can be fitted with a β-Ginibre point process. Moreover we prove that their superposition tends to a Poisson point process as it can be seen from real data. Qualitative interpretations on deployment strategies are derived from the model fitting of the raw data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.