We developed a dichoptic global orientation coherence paradigm to quantify interocular suppression in amblyopia. This task is biased towards ventral processing and allows comparison with two other techniques-global motion processing, which is more dorsally biased, and binocular phase combination, which most likely reflects striate function. We found a similar pattern for the relationship between coherence threshold and interocular contrast curves (thresholds vs. interocular contrast ratios or TvRs) in our new paradigm compared with those of the previous dichoptic global motion coherence paradigm. The effective contrast ratios at balance point (where the signals from the two eyes have equal weighting) in our new paradigm were larger than those of the dichoptic global motion coherence paradigm but less than those of the binocular phase combination paradigm. The measured effective contrast ratios in the three paradigms were also positively correlated with each other, with the two global coherence paradigms having the highest correlation. We concluded that: (a) The dichoptic global orientation coherence paradigm is effective in quantifying interocular suppression in amblyopia; and (b) Interocular suppression, while sharing a common suppression mechanism at the early stage in the pathway (e.g., striate cortex), may have additional extra-striate contributions that affect both dorsal and ventral streams differentially.
It has been suggested that the Bouba/Kiki effect, in which meaningless speech sounds are systematically mapped onto rounded or angular shapes, reflects a universal crossmodal correspondence between audition and vision. Here, radial frequency (RF) patterns were adapted in order to compare the Bouba/Kiki effect in Eastern and Western participants demonstrating different perceptual styles. Three attributes of the RF patterns were manipulated: The frequency, amplitude, and spikiness of the sinusoidal modulations along the circumference of a circle. By testing participants in the US and Taiwan, both cultural commonalities and differences in sound-shape correspondence were revealed. RF patterns were more likely to be matched with “Kiki” than with “Bouba” when the frequency, amplitude, and spikiness increased. The responses from both groups of participants had a similar weighting on frequency; nevertheless, the North Americans had a higher weighting on amplitude, but a lower weighting on spikiness, than their Taiwanese counterparts. These novel results regarding cultural differences suggest that the Bouba/Kiki effect is partly tuned by differing perceptual experience. In addition, using the RF patterns in the Bouba/Kiki effect provides a “mid-level” linkage between visual and auditory processing, and a future understanding of sound-shape correspondences based on the mechanism of visual pattern processing.
Despite the rapid growth of research on the crossmodal correspondence between visually presented shapes and basic tastes (e.g., sweet, sour, bitter, and salty), most studies that have been published to date have focused on shape contour (roundness/angularity). Meanwhile, other important features, such as symmetry, as well as the underlying mechanisms of the shape-taste correspondence, have rarely been studied. Over two experiments, we systematically manipulated the symmetry and contours of shapes and measured the influences of these variables on shape-taste correspondences. Furthermore, we investigated a potential underlying mechanism, based on the common affective appraisal of stimuli in different sensory modalities. We replicated the results of previous studies showing that round shapes are associated with sweet taste, whereas angular shapes are associated with sour and bitter tastes. In addition, we demonstrated a novel effect that the symmetry group of a shape influences how it is associated with taste. A significant relationship was observed between the taste and appraisal scores of the shapes, suggesting that the affective factors of pleasantness and threat underlie the shape-taste correspondence. These results were consistent across cultures, when we compared participants from Taiwanese and Western (UK, US, Canada) cultures. Our findings highlight that perceived pleasantness and threat are culturally common factors involved in at least some crossmodal correspondences.
Observers' ability to integrate features into extended contours, and to exploit the flanking structure to facilitate contrast detection (flank facilitation), exhibit a similar dependence on element spacing and orientation. Here, we investigate whether this reflects the operation of a common cortical mechanism by comparing performance for both tasks under monocular, binocular, dichoptic, and stereoscopic viewing conditions. Our results clearly implicate different cortical sites for flank-facilitated detection and contour integration; the former is a purely monocular phenomenon and must therefore occur at the earliest stages of cortical processing. In contrast, contour integration is a binocular process and occurs after the encoding of relative disparity, suggesting substantial extra-striate involvement. We conclude that the sites, and therefore the mechanisms, underlying these two seemingly related psychophysical phenomena are different.
Even with increasing evidence for roles of glycolytic enzymes in controlling cancerous characteristics, the best target of candidate metabolic enzymes for lessening malignancy remains under debate. Pyruvate is a main glycolytic metabolite that could be mainly converted into either lactate by Lactate Dehydrogenase A (LDHA) or acetyl-CoA by Pyruvate Dehydrogenase E1 component α subunit (PDHA1) catalytic complex. In tumor cells, accumulating lactate is produced whereas the conversion of pyruvate into mitochondrial acetyl-CoA is less active compared with their normal counterparts. This reciprocal molecular association makes pyruvate metabolism a potential choice of anti-cancer target. Cellular and molecular changes were herein assayed in Head and Neck Squamous Cell Carcinoma (HNSCC) cells in response to LDHA and PDHA1 loss in vitro , in vivo and in clinic. By using various human cancer databases and clinical samples, LDHA and PDHA1 levels exhibit reversed prognostic roles. In vitro analysis demonstrated that decreased cell growth and motility accompanied by an increased sensitivity to chemotherapeutic agents was found in cells with LDHA loss whereas PDHA1-silencing exhibited opposite phenotypes. At the molecular level, it was found that oncogenic Protein kinase B (PKB/Akt) and Extracellular signal-regulated kinase (ERK) singling pathways contribute to pyruvate metabolism mediated HNSCC cell growth. Furthermore, LDHA/PDHA1 changes in HNSCC cells resulted in a broad metabolic reprogramming while intracellular molecules including polyunsaturated fatty acids and nitrogen metabolism related metabolites underlie the malignant changes. Collectively, our findings reveal the significance of pyruvate metabolic fates in modulating HNSCC tumorigenesis and highlight the impact of metabolic plasticity in HNSCC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.