Numerical predictions of the forced vibration of a disk assembly including frictional effects between the shrouds are presented concerning engineering needs for the blade design process. Assuming a tuned disk assembly, numerical static, free, and then forced vibration analyses of a shrouded turbine blade measured in the spin pit are performed systematically. For the excitation forces of an air jet evaluated from the fairly linear behavior of the experimental blade resonance peaks, the reliability of the proposed approach is validated through the very close agreement of the computed and measured resonant peaks. These resonant peaks demonstrate either a fairly linear behavior or a nonlinear one like the jump effect of blade resonance amplitudes, or elastic impacts between the shrouds. Also, the damping performance for different contact configurations between the shrouds is numerically analyzed. These numerical results indicate that the shrouds generate higher frictional damping for small angles (0–30deg) between the circumferential direction and the normal vector to the contact surface.
In gas and steam turbine applications a common approach to prevent the blades from high cycle fatigue failures due to high vibration amplitudes is the usage of friction damping elements. Besides the intended amplitude reduction this procedure also features some possibly unwanted side effects like a shift in resonance frequencies due to stiffening effects caused by the contact. Thus, as an alternative an eddy current based noncontacting damping concept for the application in turbomachinery is investigated. In this paper two different types of eddy current dampers are considered. Theoretical models for both are established by applying electromagnetic-mechanical theory. The theoretical models are compared with forced response measurements that are performed at a stationary test rig.
In gas and steam turbine applications a common approach to prevent the blades from high cycle fatigue failures due to high vibration amplitudes is the usage of friction damping elements. Besides the intended amplitude reduction this procedure also features some possibly unwanted side effects like a shift in resonance frequencies due to stiffening effects caused by the contact. Thus, as an alternative an eddy current based non-contacting damping concept for the application in turbo machinery is investigated. In this paper two different types of eddy current dampers are considered. Theoretical models for both are established by applying electromagnetic-mechanical theory. The theoretical models are compared to forced response measurements that are performed at a stationary test rig.
In steam turbine power plants, the appropriate design of the last stage blades is critical in determining the plant efficiency and reliability and competitiveness. A high level of technical expertise combined with many years of operating experience are required for the improvement of last stage designs that increases performance, without sacrificing mechanical reliability. This paper focuses on three main development areas that are key for the development of last stage blades, namely the aerodynamic design, the mechanical design and the validation process. The three different lengths of last stage blade (LSB) were developed of 41in, 45in and 49in (and a number of scaled variants). The aerodynamic design process involves 3D CFD and flow path analysis, considerations such as last stage blade flutter and water droplet erosion, and last stage guide design. The mechanical design includes finite element stress and dynamic analysis, appropriate selection of the blade material, the coupling of the LSB with the rotor and the design of the LSB snubber and shroud. Experimental measurements form a key part of the product validation, from both the mechanical reliability and performance points of view.
In the dynamics of turbomachinery the mechanical damping of the blading is in the focus of research for the last decades to improve the dynamic performance in terms of high cycle fatigue issues. Besides that an increased mechanical damping can produce a higher flutter safety margin such that stable operation conditions are achievable in a bigger range. Hence, novel damping techniques are considered besides the well known friction based damping devices. In this paper an extended analysis of the eddy current based damping device for a last stage steam turbine blading presented in GT2009-59593 is conducted. A transient electromagnetic finite element analysis of the eddy current damper is performed and the resulting damping forces are compared to their analytical solution. Parameter studies are carried out and equivalent damping factors are calculated. Furthermore, for the validation of the finite element model a test rig was built which allows for the direct measurement of damping forces when forcing a sinusoidal relative motion. Forced response measurements and simulations are used to demonstrate its dynamic performance and predictability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.