Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.
a b s t r a c tCompared with traditional drug solutions or suspensions, polymeric microparticles represent a valuable means to achieve controlled and prolonged drug delivery into joints, but still suffer from the drawback of limited retention duration in the articular cavity. In this study, our aim was to prepare and characterize magnetic biodegradable microparticles containing dexamethasone acetate (DXM) for intra-articular administration. The superparamagnetic properties, which result from the encapsulation of superparamagnetic iron oxide nanoparticles (SPIONs), allow for microparticle retention with an external magnetic field, thus possibly reducing their clearance from the joint. Two molecular weights of poly(lactic-co-glycolic acid) (PLGA) were used, 12 and 19 kDa. The prepared batches were similar in size (around 10 lm), inner morphology, surface morphology, charge (neutral) and superparamagnetic behaviour. The SPION distribution in the microparticles assessed by TEM indicates a homogeneous distribution and the absence of aggregation, an important factor for preserving superparamagnetic properties. DXM release profiles were shown to be quite similar in vitro (ca. 6 days) and in vivo, using a mouse dorsal air pouch model (ca. 5 days).
A solid oxide short stack composed of 6 Ni-YSZ supported cells, YSZ electrolyte and GDC-LSC oxygen electrode has been tested for 10,700 hours in steam electrolysis. Initial degradation was followed by a global stabilization of the performance after lowering the current density, with a degradation rate below 0.5% kh -1 .Post-test analysis has been conducted on two repeating units (RUs) to highlight the most significant microstructure alterations. Nickel depletion was observed in the hydrogen electrode close to the interface with the electrolyte. Formation of small pores in the electrolyte was detected along the grain boundaries. A consequent detachment related to this phenomenon was observed in proximity of the GDC compatibility layer. At the oxygen electrode side, the formation of ã 1 mm dense mixed layer of GDC and YSZ was observed. Strontium from the LSC electrode migrated through GDC pores and reacted with YSZ, forming evident SrZrO 3 inclusions. Distinct accumulation of silicon at the Ni/YSZ interface and chromium on the GDC barrier layer have been observed in both RUs. Despite this range of alterations observed, the stack degradation remained limited, testified from the fact that performance decay between 4,000 and 10,000 hours of operation was virtually nil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.