Background: Men’s university ice hockey has received little scientific attention over the past 30 years, a time in which the traits of the players and the demands of the game have evolved. Objectives: This study compared the physiological characteristics of university ice hockey players and examined the frequency and duration of the different movement patterns and heart rate (HR) responses during competition. Methods: Twenty male ice hockey players from the same team ( age ± SD = 22±2 years) underwent a fitness evaluation and were filmed and HR monitored during regular season games. Results: Forwards and defense had similar fitness and only differed on % fatigue index and peak heart during on-ice sprinting (P<0.05). Defense stood, glided and skated backwards more than forwards and forwards skated at a moderate intensity and glided forward more than defense (P<0.05). All players spent the majority of game time gliding forward (60% of the time) followed by skating forward at a moderate intensity (17%) and standing with little movement (9%). Average HR during the game reached 96 and 92 % and peak HR was 100 and 96 % of maximum in forwards and defense, respectively. Conclusions: Male university hockey players present with a high level of physical fitness in a variety of categories with few differences between forwards and defense. Movement patterns during games suggest that players are performing low to moderate intensity on-ice activities the majority of the time. Paradoxically, HR continues to climb to near maximum during on ice shifts.
In the past few years there has been a change from emphasizing the classical cross-country ski technique to introducing the skating technique. Use of the skating stride has led to the adoption of roller skates instead of the ratchet-type roller skis for dryland training. Therefore the question arises as to whether the roller skates simulate the movement pattern observed on snow. This study attempted to answer this question and to evaluate the movement similarity between a newly designed skating-specific roller ski and snow skis in performing the skating stride. The marathon skate was chosen for analysis as it was the most established and consistent skating stride. Biomechanical cinematography was used to acquire a sagittal and anterior view of the skiers. Temporal and angular kinematic data were collected. Both dryland devices approximated the snow skiing pattern, yet it was found that due to the discrepancies in the propulsion phase between the roller skates and the snow skis, the “Nordic Skate” roller skis proved to more closely simulate the on-snow technique.
The results indicated that at slower velocities, there were differences in the stride characteristics and lower-extremity kinematics while sprinting on a treadmill. As the velocity approached near maximum mechanical breakdown was seen, suggesting that velocities greater than 90% should be used selectively during treadmill training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.