Antimony (Sb) has emerged as an attractive anode material for both lithium and sodium ion batteries due to its high theoretical capacity of 660 mA h g−1. In this work, a novel peapod‐like N‐doped carbon hollow nanotube encapsulated Sb nanorod composite, the so‐called nanorod‐in‐nanotube structured Sb@N‐C, via a bottom‐up confinement approach is designed and fabricated. The N‐doped‐carbon coating and thermal‐reduction process is monitored by in situ high‐temperature X‐ray diffraction characterization. Due to its advanced structural merits, such as sufficient N‐doping, 1D conductive carbon coating, and substantial inner void space, the Sb@N‐C demonstrates superior lithium/sodium storage performance. For lithium storage, the Sb@N‐C exhibits a high reversible capacity (650.8 mA h g−1 at 0.2 A g−1), excellent long‐term cycling stability (a capacity decay of only 0.022% per cycle for 3000 cycles at 2 A g−1), and ultrahigh rate capability (343.3 mA h g−1 at 20 A g−1). For sodium storage, the Sb@N‐C nanocomposite displays the best long‐term cycle performance among the reported Sb‐based anode materials (a capacity of 345.6 mA h g−1 after 3000 cycles at 2 A g−1) and an impressive rate capability of up to 10 A g−1. The results demonstrate that the Sb@N‐C nanocomposite is a promising anode material for high‐performance lithium/sodium storage.
Bismuth telluride alloy films of uniform thickness have been successfully prepared by electrodeposition from a solution containing Bi3+ and HTe02+ ions in 1 mol dm-3 nitric acid (pH=O) on stainless steel. The electrodeposited films are monophasic and exhibit a polycrystalline structure (R3rn). The film composition is dependent on the electrolyte composition and the current density. The electrical properties of the electrodeposited samples have been determined. The obtained films are n-type semiconductors with high carrier concentration.
Graphene quantum dots (GQDs) which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity, high surface area, and good solubility in various solvents. GQDs combine the quantum confinement and edges effects and the properties of graphene. Therefore, GQDs offers a broad range of applications in various fields (medicine, energy conversion, and energy storage devices). This review will present the recent research based on the introduction of GQDs in batteries, supercapacitors, and micro‐supercapacitors as electrodes materials or mixed with an active material as an auxiliary agent. Tables, discussed on selected examples, summarize the electrochemical performances and finally, challenges and perspectives are recalled for the subsequent optimization strategy of electrode materials. This review is expected to appeal a broad interest on functional GQDs materials and promote the further development of high‐performance energy storage device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.