band, this phenomenon does not have much practical significance.If computation works sensibly, within the PBG frequency range, transmission and reflection should add up to unity in the 2D case. Thus, during the optimization process (for example), it suffices to study the transmission power only. Because reflection is not studied, short input WG can be used, which limits the computation space. Also, the post-processing time is halved, because only one observation plane is used. Assuming that one is only interested in the transmission of the bend structure shown in Figure 7, one could approximately halve the computation space and use a single observation plane. Then, in the 2D case, one optimization step (simulation plus post-processing) with 4000 FDTD time steps, 2*27 E-points, 27 H-points, takes about 100 sec using a PC with 700 MHz/770-MB RAM (the speed of field computation is 1000 time steps/18 sec). CONCLUSIONModelling PBG waveguide components has been considered, with field computation using FDTD. As an example, a 120°b end has been studied more closely, and power transmission results have been shown for various cases. The true necessity of bend geometry optimization has become apparent. Considering optimization, an approximative result for bend transmission is enough, that is, the spectrum does not have to fully converge. Then, with a 700-MHz PC, one optimization step (field computation and post-processing) takes a few minutes when using a 2-D model in field computation. Taking the finite-PBG plate thickness into account by using a 3D model will increase the needed time to tens of minutes.With 2D bend structures, the convergence of the spectrum may be very slow in certain frequencies. With 3D structures this "ringing problem" is less severe, due to the radiation losses in the z direction. In general, the cell size ⌬ ϭ a/10 seems to be sufficient if studying these structures at frequencies fa/c Յ 0.3. This is an important point if one strives for quick optimization. However, there may be structures with special frequencies, which can be very sensitive to the cell size and the relative hole size d/a. Key words: wide tuning range; millimeter-wave VCO; P-HEMT technology INTRODUCTIONAs demand for higher-frequency systems such as high-speed optical communication networks and automotive radar systems has increased, millimeter-wave component technology has become very important. Tunable low-phase noise oscillators are key components in millimeter-wave systems. Several oscillators operating at millimeter-wave frequencies using HEMT or HBT technology have been reported [1][2][3][4][5]. Although HBT-based oscillators have exhibited better phase-noise performance than HEMT-based oscillators, the output power available from HBT-based oscillators cannot compete with that of HEMT-based oscillators. Also, the HBT process is not compatible with the P-HEMT process, which is the most favored millimeter-wave circuit technology. For highlevel integration of monolithic VCOs with other MMIC components using the mature GaAs P-HEMT...
We analyze the properties of two-dimensionally periodic dielectric structures that have a band gap for propagation in a plane and that use index guiding to confine light in the third dimension. Such structures are more amenable to fabrication than photonic crystals with full three-dimensional band gaps, but retain or approximate many of the latter's desirable properties. We show how traditional band-structure analysis can be adapted to slab systems in the context of several representative structures, and describe the unique features that arise in this framework compared to ordinary photonic crystals. ͓S0163-1829͑99͒00832-2͔
Abstract-The operation principle of resonant channel add-drop filters based on degenerate symmetric and antisymmetric standing-wave modes has been described elsewhere using group theoretical arguments. In this paper, the analysis is carried out using coupling of modes in time. A possible implementation of such a filter is a four-port system utilizing a pair of identical single-mode standing wave resonators. The analysis allows a simple derivation of the constraints imposed on the design parameters in order to establish degeneracy. Numerical simulations of wave propagation through such a filter are also shown, as idealized by a two-dimensional geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.