We introduce SMProbLog, a generalization of the probabilistic logic programming language ProbLog. A ProbLog program defines a distribution over logic programs by specifying for each clause the probability that it belongs to a randomly sampled program, and these probabilities are mutually independent. The semantics of ProbLog is given by the success probability of a query, which corresponds to the probability that the query succeeds in a randomly sampled program. It is well-defined when each random sample uniquely determines the truth values of all logical atoms. Argumentation problems, however, represent an interesting practical application where this is not always the case. SMProbLog generalizes the semantics of ProbLog to the setting where multiple truth assignments are possible for a randomly sampled program, and implements the corresponding algorithms for both inference and learning tasks. We then show how this novel framework can be used to reason about probabilistic argumentation problems. Therefore, the key contribution of this paper are: a more general semantics for ProbLog programs, its implementation into a probabilistic programming framework for both inference and parameter learning, and a novel approach to probabilistic argumentation problems based on such framework.
Combinatorics math problems are often used as a benchmark to test human cognitive and logical problem-solving skills. These problems are concerned with counting the number of solutions that exist in a specific scenario that is sketched in natural language. Humans are adept at solving such problems as they can identify commonly occurring structures in the questions for which a closed-form formula exists for computing the answer. These formulas exploit the exchangeability of objects and symmetries to avoid a brute-force enumeration of all possible solutions. Unfortunately, current AI approaches are still unable to solve combinatorial problems in this way. This paper aims to fill this gap by developing novel AI techniques for representing and solving such problems. It makes the following five contributions. First, we identify a class of combinatorics math problems which traditional lifted counting techniques fail to model or solve efficiently. Second, we propose a novel declarative language for this class of problems. Third, we propose novel lifted solving algorithms bridging probabilistic inference techniques and constraint programming. Fourth, we implement them in a lifted solver that solves efficiently the class of problems under investigation. Finally, we evaluate our contributions on a real-world combinatorics math problems dataset and synthetic benchmarks.
While solving math word problems automatically has received considerable attention in the NLP community, few works have addressed probability word problems specifically. In this paper, we employ and analyse various neural models for answering such word problems. In a two-step approach, the problem text is first mapped to a formal representation in a declarative language using a sequence-to-sequence model, and then the resulting representation is executed using a probabilistic programming system to provide the answer. Our best performing model incorporates general-domain contextualised word representations that were finetuned using transfer learning on another in-domain dataset. We also apply end-to-end models to this task, which bring out the importance of the two-step approach in obtaining correct solutions to probability problems.
We present a text classifier that can distinguish Italian news stories from editorials. Inspired by earlier work on English, we built a suitable train/test corpus and implemented a range of features, which can predict the distinction with an accuracy of 89,12%. As demonstrated by the earlier work, such a feature-based approach outperforms simple bag-of-words models when being transferred to new domains. We argue that the technique can also be used to distinguish opinionated from non-opinionated text outside of the realm of newspapers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.