The fabrication of hydrogel scaffolds is an important research area in tissue engineering. Hydrogels are textured to provide a 3D-framework that is favorable for cell proliferation and/or differentiation. Optimum hydrogel pore size depends on its biological application. Producing porous hydrogels is commonly achieved through freeze-drying. However, the mechanisms of pore formation remain to be fully understood. We carefully analyzed scaffolds of a cross-linked polysaccharide-based hydrogel developed for bone tissue engineering, using state-of-the-art microscopic techniques. Our experimental results evidenced the shaping of hydrogel during the freezing step, through a specific ice-templating mechanism. These findings will guide the strategies for controlling the porous structure of hydrogel scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.