We give examples of smooth plane quartics over Q with complex multiplication over Q by a maximal order with primitive CM type. We describe the required algorithms as we go; these involve the reduction of period matrices, the fast computation of Dixmier-Ohno invariants, and reconstruction from these invariants. Finally, we discuss some of the reduction properties of the curves that we obtain.
We give bounds on the primes of geometric bad reduction for curves of genus three of primitive CM type in terms of the CM orders. In the case of elliptic curves, there are no primes of geometric bad reduction because CM elliptic curves are CM abelian varieties, which have potential good reduction everywhere. However, for genus at least two, the curve can have bad reduction at a prime although the Jacobian has good reduction. Goren and Lauter gave the first bound in the case of genus two.In the case of hyperelliptic curves, our results imply bounds on primes appearing in the denominators of invariants and class polynomials, which are essential for algorithmic construction of curves with given characteristic polynomials over finite fields. We expect that similar results are also valid for Picard curves. arXiv:1609.05826v3 [math.NT]
We give a bound on the primes dividing the denominators of invariants of Picard curves of genus 3 with complex multiplication. Unlike earlier bounds in genus 2 and 3, our bound is based, not on bad reduction of curves, but on a very explicit type of good reduction. This approach simultaneously yields a simplification of the proof and much sharper bounds. In fact, unlike all previous bounds for genus 3, our bound is sharp enough for use in explicit constructions of Picard curves.
In this article we prove an analogue of a theorem of Lachaud, Ritzenthaler, and Zykin, which allows us to connect invariants of binary octics to Siegel modular forms of genus 3. We use this connection to show that certain modular functions, when restricted to the hyperelliptic locus, assume values whose denominators are products of powers of primes of bad reduction for the associated hyperelliptic curves. We illustrate our theorem with explicit computations. This work is motivated by the study of the values of these modular functions at CM points of the Siegel upper-half space, which, if their denominators are known, can be used to effectively compute models of (hyperelliptic, in our case) curves with CM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.