Respiratory syncytial virus (RSV) infection causes bronchiolitis and pneumonia in infants.RSV has a linear single-stranded RNA genome encoding 11 proteins, 2 of which are nonstructural (NS1 and NS2). RSV specifically downregulates STAT2 protein expression, thus enabling the virus to evade the host type I interferon response. Degradation of STAT2 requires proteasomal activity and is dependent on the expression of RSV NS1 and NS2 (NS1/2). Here we investigate whether RSV NS proteins can assemble ubiquitin ligase (E3) enzymes to target STAT2 to the proteasome. We demonstrate that NS1 contains elongin C and cullin 2 binding consensus sequences and can interact with elongin C and cullin 2 in vitro; therefore, NS1 has the potential to act as an E3 ligase. By knocking down expression of specific endogenous E3 ligase components using small interfering RNA, NS1/2, or RSV-induced STAT2, degradation is prevented. These results indicate that E3 ligase activity is crucial for the ability of RSV to degrade STAT2. These data may provide the basis for therapeutic intervention against RSV and/or logically designed live attenuated RSV vaccines.Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infections in infants and young children (28,31). RSV belongs to the genus Pneumovirus in the subfamily Pneumovirinae of the family Paramyxoviridae. It is an enveloped, nonsegmented negative-strand RNA virus encoding 11 proteins, including nucleocapsid proteins (N, P, and L), surface proteins (F and G), and a matrix protein (M). In addition, the genome encodes two nonstructural proteins (NS1 and NS2), the functions of which are less clearly defined. RSV primarily infects epithelial cells of the respiratory tract and replicates exclusively in the cytoplasm. Progeny RSV particles exit the host cell by budding through the apical surfaces of polarized cells (35).In order to combat such infections, the immune system has evolved a potent antiviral response. Mediators, known as the type I interferons (alpha interferon [IFN-␣] and IFN-), stimulate the production of a range of antiviral gene products that limit virus replication and spread (4, 22). The type I IFN receptor consists of two subunits, IFNAR1 and IFNAR2, which are associated with the Janus kinases JAK1 and TYK2, respectively (23). Activation of these receptor tyrosine kinases results in tyrosine phosphorylation of signal transducer and activator of transcription 2 (STAT2) and STAT1. Activated STAT2 and STAT1 associate with interferon regulatory factor 9 (IRF-9) to form the transcriptional activator complex interferon-stimulated gene factor 3 (ISGF-3). These complexes translocate to the nucleus and bind IFN-stimulated response elements (ISRE) to initiate gene transcription and therefore antiviral immunity (8).Wild-type RSV induces a weak type I IFN response following infection (27), suggesting that it has the capacity to evade this host defense mechanism in order to establish a successful infection. RSV is thought to block IFN-␣ and - signaling...
2D MXenes materials have the versatile chemical composition, tunable layer thickness, and facile functionalization nature advantages, which could be used as catalysts for hydrogen evolution reaction (HER). However, tuning the...
An unexpected Cu-catalyzed deoxygenative C2-sulfonylation reaction of quinoline N-oxides in the presence of radical initiator K2S2O8 was developed that used sodium sulfinate as a sulfonyl coupling partner. The mechanism studies indicate that the reaction proceeds via Minisci-like radical coupling step to give sulfonylated quinoline with good chemical yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.