Alpha-lactalbumin (␣-La), a globular protein found in all mammalian milk, has been used as an ingredient in infant formulas. The protein can be isolated from milk using chromatography/gel filtration, membrane separation, enzyme hydrolysis, and precipitation/aggregation technologies. ␣-La is appreciated as a source of peptides with antitumor and apoptosis, antiulcerative, immune modulating, antimicrobial, antiviral, antihypertensive, opioid, mineral binding, and antioxidative bioactivities, which may be utilized in the production of functional foods. Nanotubes formed by the protein could find applications in foods and pharmaceuticals, and understanding its amyloid fibrils is important in drawing strategies for controlling amyloidal diseases. Bioactive peptides in ␣-La are released during the fermentation or ripening of dairy products by starter and nonstarter microorganisms and during digestion by gastric enzymes. Bioactive peptides are also produced by deliberate hydrolysis of ␣-La using animal, microbial, or plant proteases. The occurrence, structure, and production technologies of ␣-La and its bioactive peptides are reviewed.
Lysozyme was selected as a model enzyme to investigate the effects of pulsed electric fields (PEF) on its activity and structure. The irreversible inactivation of lysozyme in sodium phosphate buffer (10 mM, pH 6.2) induced by PEF at 35 kV/cm followed a first-order model when the treatment time was longer than 300 micros. Unfolding of lysozyme structure was induced by PEF, accompanied by the cleavage of disulfide bonds and self-association aggregation when the applied PEF dosage was higher than a critical level. The inactivation of lysozyme by PEF was correlated to the loss of alpha-helix in secondary structure. The relative residual activity of PEF-treated lysozyme was in close agreement with the relative molar ellipticity at 208 nm. Both PEF- and heat-induced inactivations of lysozyme were correlated to the alteration of the secondary structure of lysozyme, but the effects of PEF and heat treatment on secondary structure were inconsistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.