Summary
Harmful effects of ultraviolet rays and protection against them have been long discussed. Numerous synthetic dyes, finishes, UV absorbers, and optical brightening agents are present in the market for decades for achieving UV protection through textiles. However, due to environmental impacts of these chemical agents, textile industry is looking for alternatives. In this regard, some natural dyes and plant extracts have shown promising results. However, use of colorless plant extracts as UV protective finishes is still rare. In this study, ultraviolet protection factor (UPF) rating of bleached cotton fabric has been improved by the application of plant extracts with minimal change in fabric's color. For this purpose, two medicinal plants, that is, Solanum nigrum and Amaranthus viridis were selected and bleached cotton fabric was treated with their methanolic and aqueous extracts. Fabrics treated with both extracts exhibited excellent UPF ratings.
The color of naturally colored silk (NCS) fades easily during home washing due to the loss of pigment accompanied by dissolution of the sericin. In this study, phytic acid was used to cross-link the sericin of NCS and reduce its solubility, aiming at improving the color fastness of NCS to repeated washing. It was found that the sericin-fixing effect increased as the concentration of phytic acid to 1.0 wt% and the cross-linking time to 5 h increased and then reached a constant level. Cross-linking at pH 7.0-8.5 and temperature 30-40°C could obtain relatively good sericin-fixing effects. The cross-linked NCS showed low sericin loss during the degumming and had much better color fastness to repeated washing as compared with the samples before cross-linking. The cross-linking method proposed in this study may be not only a kind of solution for improving the color fastness of NCS with high practicality but also an alternative for cross-linking sericin-based materials in the biomedical field.
Defoliants carried by cotton fiber could harm production workers and consumers through respiratory and dermal exposure. This study was carried out to evaluate the dissipation behavior of four commonly used defoliants tribufos, diuron, thidiazuron, and ethephon in cotton fiber during field stage and also in cotton scouring using liquid chromatography and gas chromatography. Field trials showed that although all the defoliants dissipated fast, however, the fiber from the tribufos and ethephon applied field had considerable potential to exceed the maximum residue limit when the fiber was harvested at common intervals after application of defoliants. The defoliant residues could be removed completely from the defoliant-carrying cotton textiles during alkaline scouring. The results indicated that attention should be paid to the risk of occupational exposure to these defoliants rather than consumer exposure. Fiber harvest on the tribufos and ethephon applied fields is recommended after a 1-week delay in order to reduce the residues to an acceptable level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.