Background Oral cancer is often preceded by a mucosal lesion called an oral potentially malignant disorder (OPMD). Many plant-derived compounds are of value in medicine. The objectives of this study were to develop a soluble mucoadhesive film containing α-mangostin (α-MG), a compound extracted from the peel of mangosteen fruit, and determine its activities against oral cancer cells, against human papillomavirus type 16 (HPV-16) pseudovirus, and its anti-inflammatory properties. Methods A soluble mucoadhesive film containing α-MG was prepared. Oral squamous carcinoma cell line (SCC25), murine macrophage cells (RAW264.7), and human gingival fibroblast cell line were cultured. Anticancer activity and viability of SCC25 cells in response to α-MG film solution were determined by MTT assay. HPV-16 pseudovirus was constructed and effects of the film solution on attachment and post-attachment steps of the infection were investigated. Anti-inflammatory activity was assessed by nitric oxide (NO) inhibition. Fibroblast cell migration was determined by in vitro scratch assay. Results The soluble α-MG film showed cytotoxic effects on SCC25 cells in concentration > 125 µg/ml with IC50 of 152.5 µg/ml. Antiviral activity against HPV-16 pseudovirus was observed at attachment step, but not at post-attachment step. The film also possessed a strong anti-inflammatory effect and promoted wound healing without cytotoxicity. Conclusions Mucoadhesive film containing α-MG has a cytotoxic effect on oral squamous carcinoma cell line and an inhibitory effect on HPV-16 pseudovirus at attachment step. The α-MG film also shows a potent anti-inflammatory activity and enhances wound healing. Thus, the soluble α-MG film may have a potential role in treating oral cancer.
A BSTRACT Objectives: Plant-derived compounds are a major source of medicinal agents. Common oral diseases, including dental caries, periodontal disease, and candidiasis, are caused by biofilms. The nature of biofilm formations is complex, emphasizing the importance of finding novel products that possess bioactivity against microbes associated with those oral infections. The aims of this study were to determine the antimicrobial activity and antibiofilm formation of α-mangostin (α-MG) soluble film. Materials and Methods: Antimicrobial assays against Streptococcus mutans, Porphyromonas gingivalis , and Candida albicans were performed by identifying the minimal growth inhibition concentration and the minimal bactericidal concentration. Time-killing kinetic studies against the organisms and inhibition of biofilm formation were determined by the broth microdilution method. Human gingival fibroblast cell line and macrophage RAW267.4 cells were cultured, and the cell viability was assessed by the MTT assay. The anti-inflammatory effect of the α-MG film was investigated by measuring the inhibition of nitric oxide production. Results: The α-MG film demonstrated antimicrobial activity against the oral pathogens tested. The formulation reduced microbial growth about 1–3 Log CFU/mL at 2–4 h and complete killing at 24 h. No significant difference in inhibiting the biofilm formation of those three microorganisms was noted. In addition, the film containing α-MG demonstrated anti-inflammatory activity through the inhibition of nitric oxide production in a dose-dependent manner. The formulation was safe and showed no cytotoxicity at therapeutic dose. Conclusions: The α-MG film is effective against S. mutans, P. gingivalis , and C. albicans without significant cytotoxicity in vitro . Thus, this new product may have potential advantage in preventing those common oral infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.