Gd-based nanomaterials offer interesting magnetic properties and have been heavily investigated for magnetic resonance imaging. The applicability of these materials beyond biomedical imaging remains limited. The current study explores the applicability of these rare-earth nanomaterials as nanozyme-mediated catalysts for colorimetric sensing of l-cysteine, an amino acid of high biomedical relevance. We show a facile solution-based strategy to synthesize two Gd-based nanomaterials viz. Gd(OH) and GdO nanorods. We further establish the catalytic peroxidase-mimic nanozyme activity of these Gd(OH) and GdO nanorods. This catalytic activity was suppressed specifically in the presence of l-cysteine that allowed us to develop a colorimetric sensor to detect this biologically relevant molecule among various other contaminants. This suppression, which could either be caused due to catalyst poisoning or enzyme inhibition, prompted extensive investigation of the kinetics of this catalytic inhibition in the presence of cysteine. This revealed a competitive inhibition process, a mechanism akin to those observed in natural enzymes, bringing nanozymes a step closer to the biological systems.
The ability to modulate the catalytic activity of inorganic nanozymes is of high interest. In particular, understanding the interactions of inhibitor molecules with nanozymes can bring them one step closer to the natural enzymes and has thus started to attract intense interest. To date, a few reversible inhibitors of the nanozyme activity have been reported. However, there are no reports of irreversible inhibitor molecules that can permanently inhibit the activity of nanozymes. In the current work, we show the ability of L-cysteine to act as an irreversible inhibitor to permanently block the nanozyme activity of 2-dimensional (2D) NiO nanosheets. Determination of the steady state kinetic parameters allowed us to obtain mechanistic insights into the catalytic inhibition process. Further, based on the irreversible catalytic inhibition capability of L-cysteine, we demonstrate a highly specific sensor for the detection of this biologically important molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.