Free-standing nanomembranes with molecular or atomic thickness are currently explored for separation technologies, electronics, and sensing. Their engineering with well-defined structural and functional properties is a challenge for materials research. Here we present a broadly applicable scheme to create mechanically stable carbon nanomembranes (CNMs) with a thickness of ~0.5 to ~3 nm. Monolayers of polyaromatic molecules (oligophenyls, hexaphenylbenzene, and polycyclic aromatic hydrocarbons) were assembled and exposed to electrons that cross-link them into CNMs; subsequent pyrolysis converts the CNMs into graphene sheets. In this transformation the thickness, porosity, and surface functionality of the nanomembranes are determined by the monolayers, and structural and functional features are passed on from the molecules through their monolayers to the CNMs and finally on to the graphene. Our procedure is scalable to large areas and allows the engineering of ultrathin nanomembranes by controlling the composition and structure of precursor molecules and their monolayers.
Freestanding carbon nanomembranes (CNMs) with a thickness between 0.6 and 1.7 nm were prepared from self-assembled monolayers (SAMs) of diverse polyaromatic precursors via low-energy electron-induced cross-linking. The mechanical properties of CNMs were investigated using AFM bulge test, where a pressure difference was applied to the membrane and the resulting deflection was measured by atomic force microscopy. We found a correlation between the rigidity of the precursor molecules and the macroscopic mechanical stiffness of CNMs. While CNMs from rigid and condensed precursors like naphthalene and pyrene thiols prove to exhibit higher Young's moduli of 15-19 GPa, CNMs from nonfused oligophenyls possess lower Young's moduli of ~10 GPa. For CNMs from less densely packed SAMs, the presence of defects and nanopores plays an important role in determining their mechanical properties. The finite element method (FEM) was applied to examine the deformation profiles and simulate the pressure-deflection relationships.
Molecular junctions incorporating
pristine and cross-linked aromatic self-assembled monolayers (SAMs)
are fabricated and investigated. A two-terminal setup composed of
a eutectic Ga–In (EGaIn) top electrode and the gold substrate
on which SAMs are prepared as a bottom electrode was used to characterize
the charge transport. SAMs of phenylthiol (PT), biphenylthiol (BPT), p-terphenylthiol (TPT), and p-quaterphenylthiol
(QPT) are then irradiated with low-energy electrons and converted
into carbon nanomembranes (CNMs). A comparison of charge transport
through SAMs and CNMs reveals a decrease of conductance of CNM-based
junctions by 1 order of magnitude, as well as a conversion of asymmetric
junctions with SAMs into symmetric junctions with CNMs, which could
be attributed to the decoupling of CNMs from the Au substrate and
the partial loss of aromaticity of CNMs after irradiation. Transition
voltage spectroscopy (TVS) was also employed to investigate both types
of junctions. We observe the length-dependent behavior of transition
voltages in both systems and a reduction of transition voltages of
CNM-based junctions in comparison to SAM-based junctions.
Penta(tert-butylthio)corannulene and penta(4-dimethylaminophenylthio)corannulene form highly stable monolayers on gold surfaces, as indicated by X-ray photoelectron spectroscopy (XPS). Formation of these homogeneous monolayers involves multivalent coordination of the five sulfur atoms to gold with the peripheral alkyl or aryl substituents pointing away from the surface. No dissociation of C-S bonds upon binding could be observed at room temperature. Yet, the XPS experiments reveal strong chemical bonding between the thioether groups and gold. Temperature-dependent XPS study shows that the thermal stability of the monolayers is higher than the typical stability of self-assembled monolayers (SAMs) of thiolates on gold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.