Microbubbles have already reached clinical practice as ultrasound contrast agents for angiography. However, modification of the bubbles’ shell is needed to produce probes for ultrasound and multimodal (fluorescence/photoacoustic) imaging methods in combination with theranostics (diagnostics and therapeutics). In the present work, hybrid structures based on microbubbles with an air core and a shell composed of bovine serum albumin, albumin-coated gold nanoparticles, and clinically available photodynamic dyes (zinc phthalocyanine, indocyanine green) were shown to achieve multimodal imaging for potential applications in photodynamic therapy. Microbubbles with an average size of 1.5 ± 0.3 μm and concentration up to 1.2 × 109 microbubbles/mL were obtained and characterized. The introduction of the dye into the system reduced the solution’s surface tension, leading to an increase in the concentration and stability of bubbles. The combination of gold nanoparticles and photodynamic dyes’ influence on the fluorescent signal and probes’ stability is described. The potential use of the obtained probes in biomedical applications was evaluated using fluorescence tomography, raster-scanning optoacoustic microscopy and ultrasound response measurements using a medical ultrasound device at the frequency of 33 MHz. The results demonstrate the impact of microbubbles’ stabilization using gold nanoparticle/photodynamic dye hybrid structures to achieve probe applications in theranostics.
The concept of liquid biopsy has emerged as a novel approach for cancer screening, which is based on the analysis of circulating cancer biomarkers in body fluids. Among the various circulating cancer biomarkers, including Food and Drug Administration (FDA)-approved circulating tumor cells (CTC) and circulating tumor DNA (ctDNA), exosomes have attracted tremendous attention due to their ability to diagnose cancer in its early stages with high efficiency. Recently, surface-enhanced Raman spectroscopy (SERS) has been applied for the detection of cancer exosomes due to its high sensitivity, specificity, and multiplexing capability. In this article, we review recent progress in the development of SERS-based technologies for in vitro identification of circulating cancer exosomes. The accent is made on the detection strategies and interpretation of the SERS data. The problems of detecting cancer-derived exosomes from patient samples and future perspectives of SERS-based diagnostics are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.